

North Burnett Regional Council

DRINKING WATER QUALITY MANAGEMENT PLAN

Revision 7

REVISION STATUS

Rev	Date	Prepared	Reviewed	Comment
Draft-1	11/05/2012	Kane Macready	Nil	
Draft-2	03/07/2012	Graham Cole	Trevor Harvey	
0	19/07/2012	Trevor Harvey	Graham Cole & Trevor Harvey	
Rev 1	31/07/2013	GHD -Fendall Hill & Gina Leach	Graham Cole & Trevor Harvey	Revision in response to issues raised in the OWSR letter of 16 November 2012
Rev 2	30/11/2017	Patty Chier (GHD) & Phil Taylor (GHD)		Revision to include additional information.
Rev 3	23/01/2018	Phil Taylor (GHD)		Updated data tables and graphs
Rev 4	21/02/2018	Phil Taylor (GHD)		Updated data tables and graphs
Rev 5	17/12/2018	Matthew Cook Brad Thode Patty Chier (GHD)	Peter Hirst Matthew Cook	This revision was undertaken by Council with assistance from GHD and the document have been reviewed by the NBRC Water Operations Team. Sections were added for Mingo and Paradise Dam Schemes.
Rev 6	28/06/2019	Matthew Cook Brad Thode Patty Chier (GHD)	Peter Hirst Matthew Cook	This revision was undertaken by Council with assistance from GHD and the document have been reviewed by the NBRC Water Operations Team. Additional information added for Mingo and plan modified based on feedback from DNRME, audit report and Wide Bay Burnett Organisation of Councils' regional assessment of DWQMP's.
Rev 7		Shaun Johnston Mark Curtis Katrina Cekanauskas	Peter Willey	A regular review and subsequent revision was undertaken by new management at NBRC. Regional issues and improvements have been removed from each system and

Rev	Date	Prepared	Reviewed	Comment
				centralised as region-wide issues with region-wide treatments. Brand-names have been removed from infrastructure descriptions where applicable. Assessment of UV systems and required upgrades and changes have been included. Plans to divest Council of one system (Paradise Dam) included. All past actions have been updated in tables and future actions consolidated accordingly. Operational and verification monitoring, CCPs, information that requires regular updating, and sensitive information have been appendicised so they can be updated separately and secured. Staff changes and new positions updated. Events, incidents, and audit addressed.

Executive Summary

The Australian Drinking Water Guidelines (ADWG) (NHMRC, NRMMC, 2011) was developed to provide guidance to water utilities and set out a framework to assist them in the development of a drinking water management system and provides the basis for the operational targets for Queensland water supply providers (WSPs). This framework incorporates elements from Hazard Analysis and Critical Control Point (HACCP) system, ISO 9001 (Quality Management) and AS/NZS 4360 (Risk Management).

This Drinking Water Quality Management Plan provides the basis for operations, supported by other referenced documents, procedures, and additional relevant information, referred to as supporting systems, to facilitate the supply of safe drinking water. It encompasses a description and understanding of the water supply systems, the water quality hazards present within the supply network and their associated risks.

Table of Contents

1.	REGISTERED SERVICE DETAILS	8
1.1	Service Provider Details	8
1.2	Scheme Details	8
2.	KEY STAKEHOLDERS	11
3.	HAZARD IDENTIFICATION, RISK ASSESSMENT AND UNCERTAINTY	17
3.1	Methodology	17
3.2	Uncertainties	18
4.	BIGGENDEN WATER SUPPLY SCHEME	19
4.1	Details of Infrastructure for Providing the Service	19
S	Source Water	19
Т	Freatment Process	19
D	Distribution	20
4.2	Biggenden Water Quality: Identifying Hazards and Hazardous Events	26
Ir	nterpretation	26
4.3	Biggenden (Degilbo Creek) Catchment Characteristics	34
4.4	Biggenden Hazard Identification, Risk Assessment and Uncertainty	36
4.5	Biggenden Risk Management Measures	40
4.6	Biggenden Risk Management Improvement Plan	43
4.7	Biggenden Water Scheme Water Quality Data	46
5.	EIDSVOLD WATER SUPPLY SCHEME	49
5.1	Details of Infrastructure for Providing the Service	49
S	Source Water	49
Т	Freatment Process	49
D	Distribution	52

5.2	Eidsvold Water Quality: Identifying Hazards and Hazardous Events	57					
h	nterpretation	57					
5.3	Eidsvold Catchment Characteristics	64					
5.4	5.4 Eidsvold Hazard Identification, Risk Assessment and Uncertainty						
5.5	Eidsvold Risk Management Measures	68					
5.6	Eidsvold Risk Management Improvement Program	70					
5.7	Eidsvold Water Supply Scheme Water Quality Data	71					
6.	GAYNDAH WATER SUPPLY SCHEME	74					
6.1	Details of Infrastructure for Providing the Service	74					
S	ource Water	74					
т	reatment Process	75					
C	Distribution	76					
6.2	Gayndah Water Quality: Identifying Hazards and Hazardous Events	81					
h	nterpretation	81					
6.3	Gayndah Catchment Characteristics	91					
6.4	Gayndah Hazard Identification, Risk Assessment and Uncertainty	92					
6.5	Gayndah Risk Management Measures	96					
6.6	Gayndah Risk Management Improvement Program	102					
6.7	Gayndah Water Supply Scheme Water Quality Data	103					
7.	MINGO CROSSING CARAVAN PARK WATER SUPPLY SCHEME	106					
7.1	Details of Infrastructure for Providing the Service	106					
S	ource Water	106					
т	reatment Process	106					
C	Distribution	109					
7.2	Mingo Crossing Water Quality: Identifying Hazards and Hazardous Events	112					
h	nterpretation	112					
7.3	Mingo Crossing Catchment Characteristics	118					
7.4	Mingo Crossing Hazard Identification, Risk Assessment and Uncertainty	119					
7.5	Mingo Crossing Risk Management Measures	122					
7.6	Mingo Crossing Risk Management Improvement Program	124					
7.7	Mingo Crossing Water Supply Scheme Water Quality Data	125					
8.	MONTO WATER SUPPLY SCHEME	127					
8.1	Details of Infrastructure for Providing the Service	127					
S	ource Water	127					
т	reatment Process	127					
C	Distribution System	128					

8.2	Monto Water Quality: Identifying Hazards and Hazardous Events	134
Ir	nterpretation	134
8.3	Monto Catchment Characteristics	141
8.4	Monto Hazard Identification, Risk Assessment and Uncertainty	142
8.5	Monto Risk Management Measures	145
8.6	Monto Risk Management Improvement Program	150
8.7	Monto Water Scheme Water Quality Data	151
9.	MOUNT PERRY WATER SUPPLY SCHEME	154
9.1	Details of Infrastructure for Providing the Service	154
S	ource Water	154
Т	reatment Process	154
D	istribution	155
9.2	Mount Perry Water Quality: Identifying Hazard and Hazardous Events	
Ir	nterpretation	
9.3	Mount Perry Catchment Characteristics	
9.4	Mount Perry Hazard Identification, Risk Assessment and Uncertainty	
9.5	Mount Perry Risk Management Measures	
9.6	Mount Perry Risk Management Improvement Program	175
9.7	Mount Perry Water Scheme Water Quality Data	
10.	MULGILDIE WATER SUPPLY SCHEME	
10.1	L Details of Infrastructure for Providing the Service	
S	ource Water	
Т	reatment Process	179
D	istribution	
10.2	2 Mulgildie Water Quality: Identifying Hazards and Hazardous Events	
Ir	nterpretation	
10.1	L Mulgildie Catchment Characteristics	
10.2	2 Mulgildie Hazard Identification, Risk Assessment and Uncertainty	
10.3	3 Mulgildie Risk Management Measures	
10.4	Mulgildie Risk Management Improvement Program	
10.5	5 Mulgildie Water Scheme Water Quality Data	204
11.	MUNDUBBERA WATER SUPPLY SCHEME	
11.1	Details of Infrastructure for Providing the Service	
S	ource Water	
Т	reatment Process	
D	istribution	

11.	.2 Mundubbera Water Quality: Identifying Hazards and Hazardous Events	213
1	Interpretation	213
11.	.3 Mundubbera Catchment Characteristics	222
11.	.4 Mundubbera Hazard Identification, Risk Assessment and Uncertainty	223
11.	.5 Mundubbera Risk Management Measures	226
11.	.6 Mundubbera Risk Management Improvement Program	231
11.	.7 Mundubbera Water Scheme Water Quality Data	233
12.	PARADISE DAM CARAVAN PARK WATER SUPPLY SCHEME	236
12.	.1 Details of Infrastructure for Providing the Service	236
	Source Water	236
-	Treatment Process	236
12.	.2 Paradise Dam Quality: Identifying Hazards and Hazardous Events	240
1	Interpretation	241
12.	.3 Paradise Dam Catchment Characteristics	248
12.	.4 Paradise Dam Hazard Identification, Risk Assessment and Uncertainty	249
12.	.5 Paradise Dam Risk Management Measures	252
12.	.6 Paradise Dam Risk Management Improvement Program	253
12.	.7 Paradise Dam Water Scheme Water Quality Data	254
13.	Region-Wide Operations	258
13.	.1 Regional Hazard Identification, Risk Assessment and Uncertainty	258
13.	.2 Regional Risk Management Measures	261
13.	.3 Regional Risk Management Improvement Plan	
14.	OPERATION AND MAINTENANCE PROCEDURES	265
14.	.1 Water Treatment Plants	265
14.	.2 Reticulation Systems	265
15.	MANAGEMENT OF INCIDENTS AND EMERGENCIES	267
15.	.1 General Management	267
15.	.2 Emergency Response Training	272
16.	SERVICE WIDE SUPPORT – INFORMATION MANAGEMENT	273
17.	APPENDIX A: OPERATIONAL MONITORING PROGRAMS	275
17.	.1 Operational Monitoring and Critical Control Points	275
I	Biggenden Operational Monitoring and CCP	277
l	Eidsvold Operational Monitoring and CCP	
(Gayndah Operational Monitoring and CCP	
I	Mingo Crossing Operational Monitoring and CCP	
I	Monto Operational Monitoring and CCP	

Mount Perry Operational Monitoring and CCP	289
Nulgildie Operational Monitoring and CCP	290
Mundubbera Operational Monitoring and CCP	292
Paradise Dam Operational Monitoring and CCP	294
APPENDIX B: VERIFICATION MONITORING PROGRAMS	296
rification Monitoring	296
Biggenden Verification Monitoring	296
Eidsvold Verification Monitoring	299
Gayndah Verification Monitoring	302
Vingo Crossing Verification Monitoring	305
Nonto Verification Monitoring	308
Nount Perry Verification Monitoring	311
Nulgildie Verification Monitoring	314
Nundubbera Verification Monitoring	317
Paradise Dam Verification Monitoring	319
Summary	321
Other Monitoring	323
	Aulgildie Operational Monitoring and CCP

1. REGISTERED SERVICE DETAILS

1.1 Service Provider Details

Table 1-1 Registered Service Provider Details

Drinking Water Service Provider:		North Burnett Regional Council	SPID		490
Contact Details:					
Family Name:	Johnston	First Name:	Shaun	Position:	Water and Wastewater Manager
Postal Address: PO Box 390 Gayne		dah Qld 4625			
Email Address: <u>admin@northbur</u>		rnett.qld.gov.au			

1.2 Scheme Details

North Burnett Regional Council (NBRC) owns and operates nine separate water supply schemes that cover several townships within the local government area. These schemes are detailed in Table 1-2.

Scheme Name	Operator (Organisation)	Communities Served	Current (2016)		Projected in 10 years (2026)			
Name	(Organisation)	Serveu	Population Served	Connections	Demand ML/D	Population Served	Connections	Demand ML/d
Gayndah	NBRC	Gayndah	1981	1090	1.32	1980	1228	1.49
Biggenden	NBRC	Biggenden	845	438	0.28	960	493	0.32
Mundubbera	NBRC	Mundubbera	1261	573	0.99	1350	646	1.12
Mulgildie	NBRC	Mulgildie	174	64	0.07	160	72	0.08
Mount Perry	NBRC	Mount Perry	538	219	0.09	500	247	0.10
Monto	NBRC	Monto	1189	750	0.71	1250	845	0.80
Eidsvold	NBRC	Eidsvold	567	327	0.54	600	368	0.61
Mingo Crossing	NBRC	Mingo Crossing Caravan Park	2	16 ²	0.008	2	32	0.02
Paradise Dam	NBRC	Paradise Dam Caravan Park	2	7 ²	0.004	2	19	0.01

Table 1-2 North Burnett Regional Council Water Supply Schemes

Notes: This figure is based on 2 permanent residents

The current population figures have been obtained from the 2016 Census data (except for Mingo Crossing and Paradise Dam as explained in the notes to the Table). The projected figures are based on reasonable projections, the average growth rate per annum between 2011 and 2016 Census data, which was calculated to be 1.2% shown not to be indicative.

Mingo Crossing and Paradise Dam projected figures have been calculated differently as they are caravan parks. They usually have 2 permanent residents. Only the Caretakers are counted in the population served.

The extent of the catchments from which various water supply schemes in NBRC draw their water is shown in Figure 1-1. This figure shows the complexity of the rivers, creeks, water courses and dams which all eventually join with the Burnett River. The North Burnett Region catchment includes the headwaters of most of the rivers and creeks which flow through this region. The Burnett River reaches the sea at Burnett Heads near Bundaberg. The diverse land uses within some of the catchments may present challenges to maintaining suitable water quality for urban water supply.

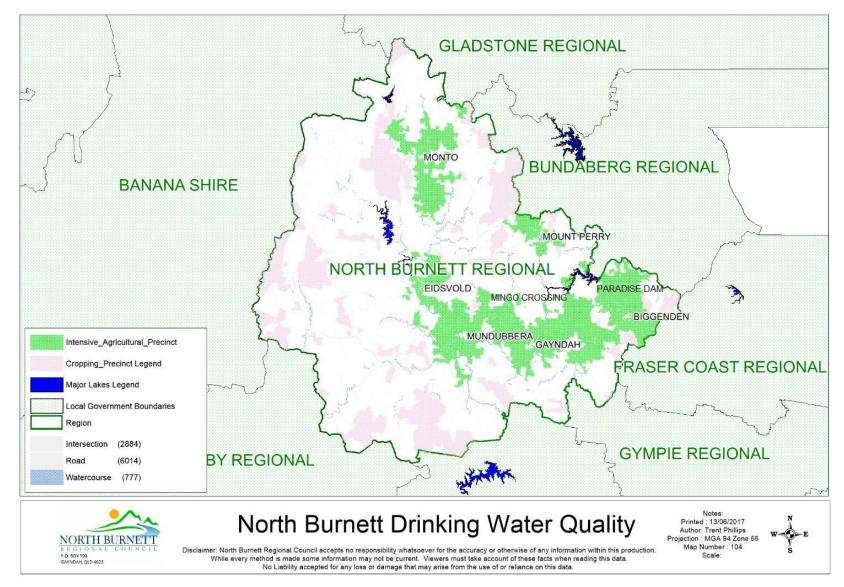


Figure 1-1 North Burnett Regional Council Water Catchments

Drinking Water Quality Management Plan

Revision 7

Page 10 of 316

2. KEY STAKEHOLDERS

The personnel listed in Table 2-1 were involved in the hazard identification and risk assessment process. They include the water supervisor and the senior operator responsible for each of the nine water supply schemes. This ensured that current and on-the-spot information was available to the team.

A list of external stakeholders relevant to this DWQMP is provided in Table 2-2. These stakeholders have a role in the supply of key chemicals for water treatment, or a critical interest in a safe and reliable water supply, either from a regulatory or consumption perspective.

Table 2-1 Internal Stakeholders

Contact Name & Organisation	Relevance to management of drinking water quality	How the stakeholder is engaged in the DWQMP	Operational Experience with NBRC	Experience in Risk Assessment Process
Randall Percy North Burnett Regional Council	General Manager Works	General, as Executive Manager responsible	24 Months with Council; Previous experience as contractor in water industry	N/A
Shaun Johnston North Burnett Regional Council M: 0458 771 193 E: <u>shaun.johnston@northburnett.qld.gov.au</u>	Water and Wastewater Manager	Operational Manager: Risk assessment and management, Water Treatment Plant (WTP)process assessment and compliance; Network risk assessment and compliance	15 months with Council; 12 years industry experience as Project Manager, Treatment and Compliance Manager and Water and Wastewater Manager	Position requires assessment and monitoring of risk in water and sewer operations across the whole jurisdiction of NBRC, including WH&S, water quality, and Regulatory compliance and performance standards in both water and sewer service delivery. Also Responsible for planning and obtaining funding for needed upgrades
Mark Curtis North Burnett Regional Council M: 0437 502 453 E: <u>mark.curtis@northburnett.qld.gov.au</u>	Senior Water and Wastewater Supervisor	Risk assessment, WTP and process assessment	9 years	Assessment and monitoring of risk in daily treatment and supply of water and sewer services for the Region, including WH&S, water quality, and regulatory compliance and performance standards in both water and sewer service delivery.
Peter Willey North Burnett Regional Council M: <u>Peter.willie@northburnett.qld.gov.au</u>	Senior Water and Wastewater Technical Officer	Compliance: assessment of processes, reporting of shortfalls, provision of system solutions; data collection, analysis and reporting	9 months	Experienced water engineer and manager
Laurie Hebblewhite North Burnett Regional Council M: 0419 780 894 E: <u>laurie.hebblewhite@northburnett.qld.gov.au</u>	Senior Water and Wastewater Operator – Biggenden and Paradise Dam	Risk assessment, WTP and process assessment	23 years with Biggenden Shire Council previous to amalgamation and 13 years with NBRC since amalgamation	Position requires assessment and monitoring of risk in daily treatment and supply of water and sewer services for the towns of Biggenden and Paradise Dam, including WH&S, water quality, and Regulatory compliance and performance standards in both water and sewer service delivery. Operator has adequate skills and experience and is able to assist the manager with risk assessments and mitigation.
Jordan Giddins North Burnett Regional Council M: 0428 408 986 E: <u>Jordan.giddins@northburnett.qld.gov.au</u>	Senior Water and Wastewater Operator – Gayndah and Mingo Crossing	Risk assessment, WTP and process assessment	6 years with Council	Position requires assessment and monitoring of risk in daily treatment and supply of water and sewer services for the towns of Gayndah and Mingo Crossing, including WH&S, water quality, and Regulatory compliance and performance standards in both water and sewer service delivery.

Contact Name & Organisation	Relevance to management of drinking water quality	How the stakeholder is engaged in the DWQMP	Operational Experience with NBRC	Experience in Risk Assessment Process
				Operator has adequate skills and experience and is able to assist the manager with risk assessments and mitigation.
Ashley Augustine North Burnett Regional Council M: 0429 653 997 E: <u>ashley.augustine@northburnett.qld.gov.au</u>	Senior Water and Wastewater Operator – Mundubbera and Eidsvold	Risk assessment, WTP and process assessment	9 years with NBRC since amalgamation	Position requires assessment and monitoring of risk in daily treatment and supply of water and sewer services for the towns of Mundubbera and Eidsvold, including WH&S, water quality, and Regulatory compliance and performance standards in both water and sewer service delivery. Operator has adequate skills and experience and is able to assist the manager with risk assessments and mitigation.
Rob Staines North Burnett Regional Council M: 0429 661 725 E: <u>rob.staines@northburnett.qld.gov.au</u>	Senior Water and Wastewater Operator – Monto, Mt. Perry and Mulgildie	Risk assessment, WTP and process assessment	9 years with Monto Shire Council previous to amalgamation and 13 years with NBRC since amalgamation	Position requires assessment and monitoring of risk in daily treatment and supply of water and sewer services for the towns of Monto and Mulgildie, including WPH&S, water quality, and Regulatory compliance and performance standards in both water and sewer service delivery. Operator has adequate skills and experience and is able to assist the manager with risk assessments and mitigation.
Jeff Miles North Burnett Regional Council M: 0427 669 919 E: j <u>eff.miles@northburnett.qld.gov.au</u>	Environmental Services Manager	Review and Compliance	4 years	Position requires assessment and monitoring of risk relating to public health and environmental compliance of Council activities.

Table 2-2 External Stakeholders

Scheme	Organisation	Relevance to management of drinking water quality	Contact details
All Schemes	IXOM Operations	Chemical Supplier	1300 550 036
	Coogee QCA Pty Ltd	Chemical Supplier	(07) 3987500
	Qld Health Laboratory	Laboratory Service Provider	(07) 3274 9075
	Office of the Water Supply Regulator	Regulatory Agency	(07) 3199 4871

Scheme	Organisation	Relevance to management of drinking water quality	Contact details	
	Toll Courier Service	Transport Service Provider	1300 366 684	
Biggenden	Biggenden Hospital	Vulnerable Customers	(07) 4127 6400	
Biggenden	Biggenden State School	Vulnerable Customers	(07) 4127 6333	
Biggenden	Biggenden & District Kindergarten	Vulnerable Customers	(07) 4127 1259	
Eidsvold	Eidsvold Hospital	Vulnerable Customers	(07) 4165 7100	
Eidsvold	Eidsvold Kindergarten	Vulnerable Customers	(07) 4165 1200	
Eidsvold	Eidsvold State School	Vulnerable Customers	(07) 4165 7333	
Eidsvold	SunWater	Raw Water Supply	13 15 89 (24 hour emergency) (07) 3120 0000 (Office)	
Gayndah	Gayndah Hospital	Vulnerable Customers	(07) 4161 3500	
Gayndah	Gayndah State School	Vulnerable Customers	(07) 4160 3333	
Gayndah	Gayndah High School	Vulnerable Customers	(07) 4161 3888	
Gayndah	St Joseph's Primary	Vulnerable Customers	(07) 4161 1889	
Gayndah	Burnett State College	Vulnerable Customers	(07) 4161 3888	
Gayndah	Gayndah Early Learning Centre	Vulnerable Customers	(07) 4140 8555	
Gayndah	Gunther Village	Vulnerable Customers	(07) 4161 3699	

Scheme	Organisation	Relevance to management of drinking water quality	Contact details
Gayndah	SunWater	Raw Water Supply	13 15 89 (24 hour emergency) (07) 3120 0000 (Office)
Mingo Crossing	SunWater	Raw Water Supply	13 15 89 (24 hour emergency) (07) 3120 0000 (Office)
Mount Perry	Mount Perry Medical Centre	Vulnerable Customers	(07) 4156 2300
Mount Perry	Mount Perry State School	Vulnerable Customers	(07) 4156 3241
Monto	Monto Hospital	Vulnerable Customers	(07) 4166 9300
Monto	Monto Kindergarten	Vulnerable Customers	(07) 4166 1584
Monto	North Burnett Childcare services	Vulnerable Customers	(07) 4166 1769
Monto	Monto State School	Vulnerable Customers	(07) 4166 9111
Monto	Monto State High School	Vulnerable Customers	(07) 4166 9555
Monto	St Therese's Catholic Primary School	Vulnerable Customers	(07) 4166 1654
Monto	Ridge Haven Retirement Complex	Vulnerable Customers	(07) 4166 1654
Monto	SunWater	Raw Water Supply	13 15 89 (24 hour emergency) (07) 3120 0000 (Office)
Mulgildie	Department of Natural Resources and Mines	Artesian Raw Water Supply	13 74 68
Mulgildie	Mulgildie State School	Vulnerable Customers	(07) 4167 2154

Scheme	Organisation	Relevance to management of drinking water quality	Contact details	
Mundubbera	Mundubbera Hospital	Vulnerable Customers	(07) 4167 2154	
Mundubbera	Mundubbera Family Day Care	Vulnerable Customers	(07) 4165 3099	
Mundubbera	Mundubbera Kindergarten	Vulnerable Customers	(07) 4165 4170	
Mundubbera	Mundubbera State School	Vulnerable Customers	(07) 4165 5333	
Mundubbera	Burnett State College	Vulnerable Customers	(07) 4161 3888 (Gayndah number)	
Mundubbera	SunWater	Raw Water Supply	13 15 89 (24 hour emergency) (07) 3120 0000 (Office)	
Paradise Dam	SunWater	Raw Water Supply	13 15 89 (24 hour emergency) (07) 3120 0000 (Office)	

3. HAZARD IDENTIFICATION, RISK ASSESSMENT AND UNCERTAINTY

3.1 Methodology

The methodology adopted for the risk assessment is consistent with the risk assessment recommendations advised by DERM throughout the advisory stage of this project. This is consistent with the risk methodology within AS/NZS 4360:2004. The description includes definitions for the (qualitative) likelihood and consequence descriptors (Table 3-1).

Three workshops were undertaken with NBRC personnel to identify the risks throughout the water supply chain including source, treatment and reticulation. NBRC has indicated that an acceptable level of risk is equal to or less than Medium (6) as defined by Table 3-2.

Likelihood	Descriptors
Rare	Occurs less than or equal to once every 5 years.
Unlikely	Occurs more often than once every 5 years and up to once per year.
Possible	Occurs more often than once per year and up to once a month (12/yr)
Likely	Occurs more often than once per month (12/yr) and up to once per week (52/yr)
Almost Certain	Occurs more often than once per week (52/yr)
Consequence	Descriptors
Insignificant	Isolated exceedance of aesthetic parameter with little or no disruption to normal operation.
Minor	Potential local aesthetic, isolated exceedance of chronic health parameter.
Moderate	Potential widespread aesthetic impact or repeated breach of chronic health parameter.
Major	Potential acute health impact, no declared outbreak expected
Catastrophic	Potential acute health impact, declared outbreak expected.

Table 3-1 Risk Methodology

Table 3-2 Likelihood and consequence risk matrix

Likelihood	lihood			Consequence		
	Insignificant Minor Moderate		Major	Catastrophic		
Almost Certain	Medium (6)	High (10)	High (15)	Extreme (20)	Extreme (25)	
Likely	Medium (5)	Medium (8)	High (12)	High (16)	Extreme (20)	
Possible	Low (3)	Medium (6)	Medium (9)	High (12)	High (15)	
Unlikely	Low (2)	Low (4)	Medium (6)	Medium (8)	High (10)	
Rare	Low (1)	Low (2)	Low (3)	Medium (5)	Medium (6)	

3.2 Uncertainties

The quality of information underpinning the risk assessment varies significantly throughout all schemes. The following table demonstrates the qualitative description to identify the reliability of the data.

Level of Uncertainty	Definition
Certain	There is 5 years of continuous monitoring data, which has been trended and assessed, with at least daily monitoring; or
	The processes involved are thoroughly understood.
Confident	There is 5 years of continuous monitoring data, which has been collated and assessed, with at least a weekly monitoring or for the duration of seasonal events; or
	There is a good understanding of the processes involved.
Reliable	There is at least a year of continuous monitoring data available, which has been assessed; or
	There is reasonable understanding of the processes involved.
Estimate	There is limited monitoring data available; or
	There is limited understanding of the processes involved.
Uncertain	There is limited or no monitoring data available; or
	The processes are not well understood.

4. BIGGENDEN WATER SUPPLY SCHEME

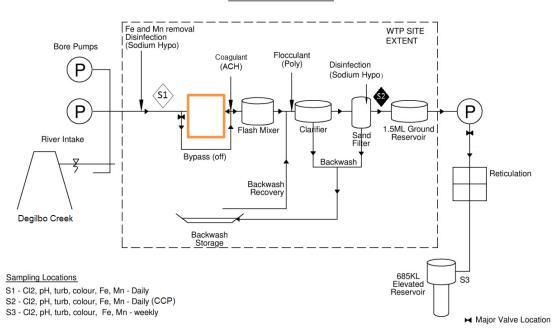
4.1 Details of Infrastructure for Providing the Service

Source Water

Biggenden, current population 845 (2016 census), is the eastern-most town in North Burnett Regional Council's jurisdiction. The primary sources of water for the Biggenden water supply are Bores 1 and 2 located in aquifers adjacent to Degilbo Creek and creek offtake. Bore 2 is normally used in preference to Bore 1, due to its higher capacity. When operationally possible, the bores are alternated on a fortnightly basis to attempt to provide even usage and wear of the respective pumps at both bores. The capacity of the bores under drought conditions, when Degilbo Creek is dry, has been modelled.

The river abstraction infrastructure (pump intake, submersible pump and associated infrastructure) is operational and used in cycles with the bores.

This alternative creek raw water source is sometimes unavailable for use, either because of low natural flow in the creek or following heavy rain when Degilbo Creek floods and the water quality deteriorates.


Treatment Process

Pre-dosing of the raw water with sodium hypochlorite for oxidation of manganese and iron prior to treatment. The raw water is then dosed with aluminium chlorohydrate (ACH) and LT25 Polymer prior to clarification and filtration.

Chlorine dosing of the treated water occurs during filtration.

The Biggenden WTP is automatic in operation. The WTP has staff onsite daily to conduct manual visual plant inspections. The WTP pumps and reservoir levels are linked to the NBRC SCADA management system. If problems at these WTP elements are detected through this SCADA system (i.e. failure of pump, low or overflow reservoir levels) an alarm is triggered, and an automatic SMS is sent to the water and wastewater manager and operator's phones. The operator will then be called out to address this SCADA alarm condition.

The Biggenden WTP has online analysers for chlorine, pH and turbidity. A failure in the chlorine injection system would trigger an alarm through SCADA. There is a 1,500 L chlorine storage tank at the WTP, the level of which is reviewed daily by operators. There is a documented operating manual for the WTP. The WTP schematic is displayed below in Figure 4-1.

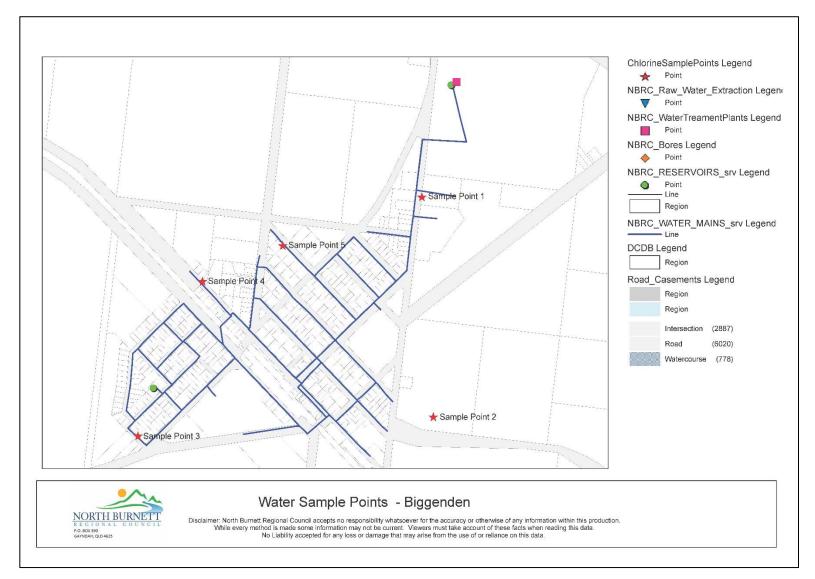

BIGGENDEN

Figure 4-1 Biggenden WTP Schematic

Distribution

Following treatment and storage, potable water is pumped from the Ground Reservoir at the WTP through the reticulation to a 685 kL Elevated Reservoir. When the pumps are not in operation, the water is gravity fed from the Elevated Reservoir back into the Reticulation.

Sampling locations are sited at key points determined to provide the best indication of chlorine residual levels in the system. Raw water samples are taken monthly at the plant and sent to Queensland Health for chemical and biological analysis. Samples are also taken each month from a minimum of one (1) of the six (6) reticulation system residual chlorine sampling points (selected on a rotational basis) and sent to Qld Health for biological analysis. One reticulation sample is taken each quarter and sent to Qld Health for chemical analysis.

Figure 4-2 Biggenden Water Supply Map

Table 4-1 Infrastructure Details – Biggenden Water Supply Scheme

Component		Scheme 1	
	Name	Degilbo Creek	
	Туре	River	
	% of supply	10%	
	Reliability	Seasonal	
	Water quality issues	High turbidity, arsenic, hardness, and conductivity (dissolved salts) and manganese	
Sources	Name	Bore 1 and 2	
	Туре	Bores	
	% of supply	90%	
	Reliability	Reliable, pumped supply from aquifer	
	Water quality issues	High in hardness, conductivity (dissolved salts), manganese and some evidence of arsenic–arsenic at moderate level from samples NBRC have added arsenic to the verification monitoring schedule.	
		River Intake (single intake structure)	
		Pump Nominal Capacity = 14L/s	
		Submersible Pumps	
Sourcing Infrastructure	Degilbo Creek	Protection = Intake is protected from debris by a pipe strainer. Intake is protected from flood damage by pylons installed in a staggered formation upstream of the intake. Pylons are meant to divert debris away from intake.	
		Ownership = NBRC	
		Pump Capacity = 8L/s	
	Bore 1	Submersible Bore Pumps	
		Casing = PVC	

Drinking Water Quality Management Plan

	Component	Scheme 1		
		Diameter = DN250 Depth =16m Ownership = NBRC		
	Bore 2	Pump Nominal Capacity = 14L/s @ 45m Submersible Bore Pumps Casing = PVC Diameter = DN250 Depth = 30 m Ownership = NBRC		
Are there any sources that do not undergo treatment prior to supply?	Νο			
	Name	Biggenden WTP		
	Process	Aquagenics WTP Process comprises clarification, and filtration.		
	Design Capacity (20 hr operation)	1.0 ML/d		
	Daily flow range	200 – 700 kL/d		
Biggondon W/TD	Chemicals added	ACH, polymer, sodium hypochlorite		
Biggenden WTP	Standby chemical dosing facilities (Y/N)	Ν		
	Water sourced from and %	River 10% and Bore 90%		
	% of average day demand provided	100%		
	% of scheme supply Distribution area supplied	100%		
	Bypasses / Variations	No		

	Component Scheme 1				
Are there any sources that do not undergo disinfection prior to supply?	Νο				
	Location	Dosed into sand filter and prior to reticulation			
	Make and Date installed	7.5-16 FCM			
	Туре	Liquid sodium hypochlorite via diaphragm dosing pump			
	Dose rate	Based on in-line analyser			
Disinfection	Target residual levels	0.5 mg/L			
	Duty/standby	No			
	Dosing arrangements	Dose rate also adjusted on receipt of new supply of chlorine and when changing water source.			
	Alarms	No alarms			
	Auto shut-off arrangements	No			
	Pipe material	AC			
	Age range	35- 45 years			
	Approx. % of total length	100%			
Distribution and Reticulation System	Areas where potential long detention periods could be expected	Water is pumped <i>through</i> the reticulation system to the tower reservoir. town is supplied <i>only</i> from the tower chlorine may be low.			
	Areas where low water pressure (e.g. < 12 m) could be expected during peak or other demand periods)	Nil			
	Name	Clear Water Reservoir			
	Capacity (ML)	1.5 ML			
Ground Reservoir	Roofed (Y/N)	Y			
	Vermin-proof (Y/N)	Y			
	Runoff directed off roof (Y/N)	Y			

Component		Scheme 1	
	Name	Elevated Reservoir	
	Capacity (ML)	685kL	
Elevated Reservoir	Roofed (Y/N)	Y	
	Vermin-proof (Y/N)	Y	
	Runoff directed off roof (Y/N)	Y	

4.2 Biggenden Water Quality: Identifying Hazards and Hazardous Events

Water quality information has been collected by NBRC for raw water, treated water and reticulated supply for the period of January 2010 to November 2018. Analysis of this data has been completed to assess the results in comparison to the Australian Drinking Water Guidelines (ADWG) values for parameters measured.

A summary of the water analysis undertaken for the Biggenden Water Supply Scheme is contained in Table 4-3, Table 4-4 and Table 4-5. Section 4.7 includes graphs of sampling data.

For raw water and treated water the following parameters have been measured monthly:

- Conductivity
- pH
- Total & temporary hardness
- Alkalinity (including residual)
- Silica
- Total dissolved ions
- Total dissolved solids
- True colour
- Turbidity
- Saturation index
- Mole ratio
- Sodium absorption ratio

- Figure of merit ratio
 Cations (sodium, potassium, calcium, magnesium and hydrogen)
- Anions (bicarbonate, carbonate, hydroxide, chloride, fluoride, nitrate, sulphate)
- Dissolved metals (iron, manganese, zinc, boron, copper, aluminium)
- Total metals (aluminium, arsenic, cadmium, chromium, copper, iron, lead, manganese, nickel, zinc)
- THM

The reticulated water scheme has been measured for pH, residual chlorine, E. coli and total coliforms.

Interpretation

Over the period of sampling, daily testing was performed on raw, treated and reticulated water by water operators. Microbiological and chemical analytes were tested on a monthly basis by the Queensland Health and Forensic Services (QHFSS) to meet the requirements of the scheme.

All parameters tested showed levels below the health guideline values for treated water except for nitrate, which was exceeded in March 2012.

Within the reticulation system test results, there was one instance where total coliforms were detected. Potential water quality issues did arise within the reticulation system due to previously low levels of residual chlorine. There were also a large number of data points missing from the data provided and a number of very high outlying readings. Increased frequency of sampling and testing, recording and operational response, has since reduced this risk.

Table 4-2 Biggenden Raw Water Source

	Biggenden Source – Bore						
Parameter		oling Time	No of	Summary of Results		sults	Comments
(mg/L unless otherwise specified)	location	Period	samples	Maximum Value	Average Value	Minimum Value	
Turbidity (NTU)	Bore 2	Jan 2010 – Nov 2018	98	174	98.7	<1	
Fluoride	Bore 2	Jan 2010 – Nov 2018	98	0.5	0.15	<0.05	Multiple limits of detection were used (<0.05, <0.1 and <0.25). In order to calculate the stats, the absolute values were used.
Nitrate	Bore 2	Jan 2010 – Nov 2018	98	58	1.9	<0.5	Multiple limits of detection were used (<0.5, <1 and <2.5). In order to calculate the stats, the absolute values were used.
Sulfate	Bore 2	Jan 2010 – Nov 2018	98	73	21.9	3.6	
Dissolved metals							
Aluminium	Bore 2	Jan 2010 – Nov 2018	98	0.18	0.052	<0.05	Multiple limits of detection were used (<0.05 and <0.1). In order to calculate the stats, the absolute values were used.
Boron	Bore 2	Jan 2010 – Nov 2018	98	0.11	0.06	0.02	
Copper	Bore 2	Jan 2010 – Nov 2018	98	0.14	0.032	<0.03	Multiple limits of detection were used (<0.03 and <0.06). In order to calculate the stats, the absolute values were used.
Iron	Bore 2	Jan 2010 – Nov 2018	98	0.31	0.016	<0.01	Multiple limits of detection were used (<0.01 and <0.02). In order to calculate the stats, the absolute values were used.
Manganese	Bore 2	Jan 2010 – Nov 2018	98	1.5	0.68	<0.01	
Zinc	Bore 2	Jan 2010 – Nov 2018	98	0.48	0.03	<0.01	Multiple limits of detection were used (<0.01 and <0.02). In order to calculate the stats, the absolute values were used.

Drinking Water Quality Management Plan

Biggenden Source – Bore									
Parameter	Sampling	Time	No of		Summary of Re	sults	Comments		
(mg/L unless otherwise specified)	location	Period	samples	Maximum	Average	Minimum			
				Value	Value	Value			
Total metals				-					
Aluminium	Bore 1 & 2	Nov 2017 – Oct 2018	5	<0.003	<0.003	<0.003	All samples were <0.003 mg/L		
Arsenic	Bore 1 & 2	Nov 2017 – Oct 2018	5	0.021	0.013	0.0072			
Cadmium	Bore 1 & 2	Nov 2017 – Oct 2018	5	<0.0001	<0.0001	<0.0001	All samples were <0.0001 mg/L		
Chromium	Bore 1 & 2	Nov 2017 – Oct 2018	5	<0.0001	<0.0001	<0.0001	All samples were <0.0001 mg/L		
Copper	Bore 1 & 2	Nov 2017 – Oct 2018	5	0.005	0.003	<0.001			
Iron	Bore 1 & 2	Nov 2017 – Oct 2018	5	9.2	7.36	6			
Lead	Bore 1 & 2	Nov 2017 – Oct 2018	5	0.0002	0.00012	<0.0001			
Manganese	Bore 1 & 2	Nov 2017 – Oct 2018	5	1.1	0.9	0.54			
Nickel	Bore 1 & 2	Nov 2017 – Oct 2018	5	0.0013	0.0009	0.0008			
Zinc	Bore 1 & 2	Nov 2017 – Oct 2018	5	0.034	0.016	0.008			

Table 4-3 Biggenden Treated Water

Plant					I	Biggenden WTP			
Parameter		_	No of samples	Su	immary of resu	lts	Australian Drinking Water Guidelines guideline value for health unless otherwise specified	No of samples exceeding Australian Drinking Water Guidelines guideline value	Comment
(mg/L unless otherwise specified)	otherwise location(s)	Period take	taken in time period	Maximum Value	Average Value	Minimum Value			
Turbidity (NTU)	WTP	Jan 2010 – Nov 2018	106	2	1.03	<1	5	0	Aesthetic guideline only
Fluoride	WTP	Jan 2010 – Nov 2018	106	0.6	0.17	<0.1	1.5	0	Multiple limits of detection were used (<0.1, <0.2, <0.25 and <0.5). In order to calculate the stats, the absolute values were used.
Nitrate	WTP	Jan 2010 – Nov 2018	106	59	2.2	<0.5	50	1	Aesthetic guideline only Multiple limits of detection were used ranging from <0.5 to <5). In order to calculate the stats, the absolute values were used. Exceedance in March 2012
Sulphate	WTP	Jan 2010 – Nov 2018	106	57	22.8	10.6	250	0	Aesthetic guideline only
Dissolved metals									
Aluminium	WTP	Jan 2010 – Nov 2018	106	<0.05	<0.05	<0.05	0.1	0	Although 0.2mg/L is the aesthetic guideline value, <0.1 mg/L is desirable All samples taken were <0.05 mg/L

Plant	Biggenden WTP									
Parameter		_	No of	Su	immary of resu	lts	Australian Drinking Water Guidelines	No of samples exceeding Australian Drinking Water Guidelines guideline value	Comment	
(mg/L unless otherwise specified)	Sampling location(s)	Time Period	samples taken in time period	Maximum Value	Average Value	Minimum Value	guideline value for health unless otherwise specified			
Boron	WTP	Jan 2010 – Nov 2018	106	0.11	0.057	0.02	1	0	Although 4mg/L is the health guideline value, concentrations in uncontaminated sources is usually <1 mg/L Most samples below detection limit.	
Copper	WTP	Jan 2010 – Nov 2018	106	0.15	0.03	<0.03	2 (1)	0	Number in brackets denotes the aesthetic guideline value Multiple limits of detection were used (<0.03 and <0.15). In order to calculate the stats, the absolute values were used.	
Iron	WTP	Jan 2010 – Nov 2018	106	0.05	0.01	<0.01	0.3	0	Aesthetic guideline only Multiple limits of detection were used (<0.01 and <0.05). In order to calculate the stats, the absolute values were used.	

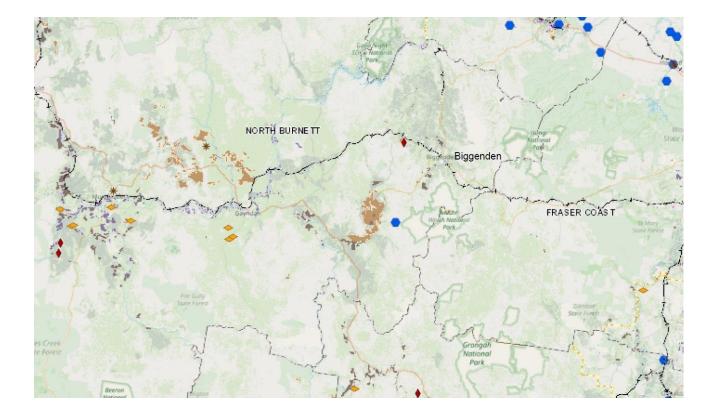
Plant									
Parameter (mg/L unless otherwise specified)			No of	Summary of results			Australian Drinking	No of samples	Comment
	vise location(s) Period	8	samples taken in time period	Maximum Value	Average Value	Minimum Value	Water Guidelines guideline value for health unless otherwise specified	exceeding Australian Drinking Water Guidelines guideline value	
Manganese	WTP	Jan 2010 – Nov 2018	106	0.23	0.015	<0.01	0.5 (0.1)	0	Number in brackets denotes the aesthetic guideline value Most samples below detection limit, though one exceedance of the aesthetic guideline value occurred in Oct 2012 Multiple limits of detection were used (<0.01 and <0.15). In order to calculate the stats, the absolute values were used.
Zinc	WTP	Jan 2010 – Nov 2018	106	0.51	0.021	<0.01	3	0	Multiple limits of detection were used (<0.01 and <0.05). In order to calculate the stats, the absolute values were used.
Total metals									
Aluminium	WTP	Nov 2017 – Oct 2018	3	0.011	0.0063	0.004	0.2	0	Although 0.2mg/L is the aesthetic guideline value, <0.1 mg/L is desirable
Arsenic	WTP	Nov 2017 – Oct 2018	3	0.0003	0.00026	0.0002	0.01	0	
Cadmium	WTP	Nov 2017 – Oct 2018	3	<0.0001	<0.0001	<0.0001	0.002	0	All samples were <0.0001 mg/L

Plant	Biggenden WTP									
Parameter			No of	Su	immary of resu	lts	Australian Drinking	No of samples	Comment	
(mg/L unless otherwise specified)	Sampling location(s)	ocation(s) Period time Maximum Average Minimum guideline value for health unless otherw	water Guidelines guideline value for health unless otherwise specified	exceeding Australian Drinking Water Guidelines guideline value						
Chromium	WTP	Nov 2017 – Oct 2018	3	<0.0001	<0.0001	<0.0001	0.05	0	All samples were <0.0001 mg/L	
Copper	WTP	Nov 2017 – Oct 2018	3	0.002	0.0013	<0.001	2 (1)	0	Number in brackets denotes the aesthetic guideline value	
Iron	WTP	Nov 2017 – Oct 2018	3	0.021	0.015	0.009	0.3	0	Aesthetic guideline only	
Lead	WTP	Nov 2017 – Oct 2018	3	<0.0001	<0.0001	<0.0001	0.01	0	All samples were <0.0001 mg/L	
Manganese	WTP	Nov 2017 – Oct 2018	3	0.0039	0.0027	0.0007	0.5 (0.1)	0	Number in brackets denotes the aesthetic guideline value	
Nickel	WTP	Nov 2017 – Oct 2018	3	0.0007	0.0005	0.0003	0.02	0		
Zinc	WTP	Nov 2017 – Oct 2018	3	0.003	0.002	0.001	3	0	Aesthetic guideline only	

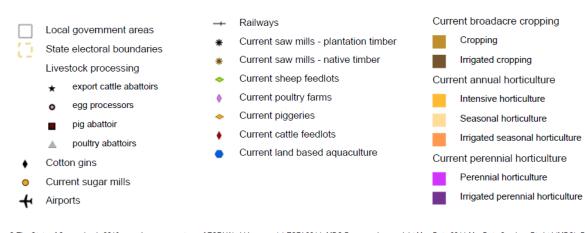
Table 4-4 Biggenden Reticulated Water Supply

Scheme Sampling Location	Biggenden Reticulated Water									
Parameter	Time Period	No of samples	Su	Immary of Resu	lts	Australian Drinking Water Guidelines guideline value	No of samples exceeding Australian Drinking Water Guidelines guideline value	Comment		
(mg/L unless otherwise specified)	i chou		Maximum Value	Average Value	Minimum Value	for health unless otherwise specified				
pH (pH units)	Jan 2010 – Nov 2018	106	8.02	7.47	6.56	6.5 - 8.5	0	Aesthetic guideline only		
Disinfectant residual	Jul 2016 – Jun 2018	65	2.3	1.4	0.54	>0.2 - 0.5	0	Guideline value is from the World Health Organization's Guidelines for Drinking-water Quality 4 th edition		
Total coliforms (mpn/100mL)	Jul 2016 – Jun 2018	66	10	0.2	0	NA	NA			
<i>E. coli</i> (CFU/100mL)	Jul 2016 – Jun 2018	66	0	0	0	None detected	0			
Trihalomethanes	Sept 2016 – Oct 2018	5	0.104	0.046	0.016	0.25	0			

Table 4-5 Biggenden Water quality complaints


Year	No of Water Quality Complaints	Water Quality Complaints per 1000 Connections	Main Reasons for Complaints	Likely Sources / Causes of Problems	Resolution of Problem
1-7-2010					
То	0	0			
26-10-2018					

4.3 Biggenden (Degilbo Creek) Catchment Characteristics


The Degilbo Creek catchment area is a rural grazing area with few environmental threats to natural water courses e.g. pesticides, fertilizer. The catchment varies from flats along the creeks to undulating and hilly. The topography is dominated by The Bluff Mountain which lies about 10 kilometres to the South of Biggenden. Degilbo creek itself conjoins with several smaller creeks including Mungore Creek and Fairview Creek. Biggenden is the only town within the catchment. Districts such as Degilbo and Didcot also have a very small number of rural residential properties. Economic activity throughout the catchment is restricted to grazing cattle though there are a few dairy farms in the catchment precincts (see Figure 4-3). Risk to water quality in the Degilbo catchment is therefore restricted to possible contamination caused by unrestricted access to the creek by cattle or natural events such as flooding and drought.

Past snapshot sampling and testing has revealed higher than expected arsenic levels in water samples taken from Degilbo Creek. Latest treated water results demonstrate that the supply is still well within safe drinking water guidelines, and the arsenic levels are still monitored for at least annually.

Water is pumped from the Degilbo creek directly or from two alluvial bores that adjoin the river. Both bores are fully enclosed and raised, preventing storm water ingress.

Legend:

© The State of Queensland. 2018 Imagery courtesy of ESRI World Imagery (c) ESRI 2014, MDS Basemap is copyright Map Data 2011 MapData Services Pty Ltd (MDS), PSMA

Figure 4-3 Biggenden and Degilbo Creek Catchment Area

4.4 Biggenden Hazard Identification, Risk Assessment and Uncertainty

	Scheme		U.S. Starte	м	aximum Risk		Existing Preventive	I	Residual risk		Level of	6	Possible and Proposed Further Risk Reduction Actions
No.	Component	Hazard	Hazard Source	Consequence	Likelihood	Risk level	Measures / Barriers.	Consequence	Likelihood	Risk level	Uncertainty	Comments	(Risk Management Improvement Plan Actions)
1	Source water	Biological contamination • Protozoa	 Livestock Wildlife Issues with Bore Infiltration Septic systems/sewage Recreation 	Catastrophic	Likely	High (10)	 The bores are completely enclosed and appropriately cased so stormwater runoff and infiltration is avoided and vermin cannot enter Filtration and coagulation 	Catastrophic	Rare	Medium (6)	Uncertain	Degilbo creek poses the only risk as it is a natural surface watercourse.	Seek alternate source and funding to develop Seek funding for UV in new plant
2	Source water	Biological contamination • Bacteria • Viruses	 Livestock Wildlife Issues with Bore Infiltration Septic Systems/sewage Recreation 	Catastrophic	Likely	High (10)	 The bores are completely enclosed and appropriately cased so storm runoff and infiltration is avoided and vermin cannot enter. Treatment processes – Chlorine disinfection at raw water and at filter stage and leaving clearwater reservoir Coagulation and filtration 	Catastrophic	Rare	Medium (6)	Uncertain	Historically, low levels of bacteria found in scheme	Seek alternate source and funding to develop Seek plant replacement funding for UV in new plant
3	Source water	Chemical contamination • Heavy metals: Arsenic	1. Natural arsenic and other chemicals in water	Major	Likely	High (16)	1. Treatment processes, coagulation and filtration	Major	Unlikely	Medium (8)	Confident	Main concern is arsenic level in raw water which is removed in the treatment process. These parameters are regularly monitored in the treated water.	Seek alternate source and funding to develop Plant replacement funding.
4	Source water	Chemical contamination • Nutrients: Nitrate • Anions: Sulphate, Fluoride	 Pesticides and Fertilisers Natural occurrences of anions 	Minor	Likely	Medium (6)	1. Treatment processes, coagulation and filtration	Minor	Unlikely	Low (4)	Uncertain	Few farmers use either pesticides or fertiliser as the area is predominantly grazing. These parameters are regularly monitored in the treated water.	Seek alternate source and funding to develop and PAC dosing in plant replacement
5	Source water	Chemical contamination • General metals: Aluminium, Iron, Manganese, Boron, Copper	1. Natural chemicals in water	Moderate	Likely	Medium (6)	1. Treatment processes, coagulation, oxidisation with Cl for iron and manganese	Moderate	Rare	Low (3)	Confident	Hardness and conductivity ongoing aesthetic issues for customers	Seek funding for plant replacement Seek alternate source and funding to develop
6	Source water	Chemical contamination	1. Accidental spills	Moderate	Rare	Low (3)	 Detection and dilution during treatment processes and storage Emergency response Public notification process (do not drink alert) 	Moderate	Rare	Low (1)	Confident	Small concentration. Only risk of any real consequence would be a chemical spill near the intake Inability to predict type or consistency of possible spill	

Table 4-6 Biggenden Hazard Identification, Risk Assessment and Uncertainty

	Scheme			N	Aaximum Risk		Existing Preventive		Residual risk		Level of	
No.	Component	Hazard	Hazard Source	Consequence	Likelihood	Risk level	Measures / Barriers.	Consequence	Likelihood	Risk level	Uncertainty	Co
7	Source water	Physical contamination • Ash • Mud	 Soil erosion Flood waters (high turbidity and colour) Bush fires Major Storms 	Minor	Possible	Medium (6)	 Treatment processes –sand filters Public notification process (boil water alert) 	Minor	Unlikely	Low (4)	Confident	
8	Source water	Lack of supply	 Inadequate maintenance Lack or failure of standby pumps Blockage of creek intake structure 	Moderate	Possible	Medium (6)	 Estimated one week's supply in reserve at clearwater and tower reservoir. Trucked water from other towns as backup supply 	Moderate	Rare	Low (3)	Confident	
9	Source water	Lack of supply	Climatic variations	Moderate	Possible	High (12)	 Importing water Drought management Plan actions: restrictions, communication etc Increasing WTP operating times 	Moderate	Rare	Low (3)	Confident	Modellin
10	Treatment	Biological contamination • Bacteria • Viruses	 Failure of chlorine injection Insufficient chlorine residual Loss of Chemical supplies Staff error Plant Design 	Major	Possible	High (12)	 Treatment processes – Chlorine disinfection at raw water and at filter stage and leaving ground reservoir Chlorine levels are tested once per day. Injection pump and chlorine supply are also checked and inspected at the same time. Public notification process (boil water alert) Trained and qualified operators – good housekeeping Security and vermin- proofing Regular cleaning and maintenance of process equipment Biggenden 2013-01 Operation of chlorine injection system have been linked to water flow. Biggenden 2013-02 Online analyser has been installed and alarmed. On-line chlorine and turbidity analysers installed for WTP. Biggenden 2018-02: Spare dosing pump is readily available for use 	Major	Rare	Medium (5)	Reliable	Multiple treatmen improver made

Page **37** of **323**

Comments	Possible and Proposed Further Risk Reduction Actions (Risk Management Improvement Plan Actions)
	Seek plant replacement funding
elling done.	Option: Ensure DMP is up-to-date and appropriate. Seek alternate source and funding to develop
iple points of ment but ovements can be	Plant upgrade including UV Seek alternate source and funding to develop

	Scheme			M	laximum Risk		Existing Preventive		Residual risk		Level of	6	Possible and Proposed Further Risk Reduction Actions
No.	Component	Hazard	Hazard Source	Consequence	Likelihood	Risk level	Measures / Barriers.	Consequence	Likelihood	Risk level	Uncertainty	Comments	(Risk Management Improvement Plan Actions)
11	Treatment	Biological contamination • Protozoa	 Cross contamination Vermin and bird access Staff error Plant Design 	Catastrophic	Rare	Medium (6)	 Security and vermin- proofing Filtration (limited efficacy) Trained and qualified operators – good housekeeping 	Catastrophic	Rare	Medium (6)	Uncertain	Option: Raw and treated water monitoring program has been reviewed to ensure its efficacy in providing sufficient data to provide confidence in the risk categorisations.	Seek plant replacement funding for UV in new plant Seek alternate source and funding to develop
12	Treatment	Chemical contamination	 Chemical overdose due to equipment failure Loss of Chemical supplies Communication breakdown (alarms) Staff error Plant Design 	Moderate	Unlikely	Medium (6)	 Treatment processes, flocculation, clarifier, oxidisation with Cl for iron and manganese Chemical injection levels are tested once per day. Dosing equipment is checked once per day. Trained and qualified operators – good housekeeping 	Moderate	Rare	Low (3)	Confident	Clear water pump failure causes an alarm but does not shut down injection pumps Existing measures are robust.	Upgraded systems with plant replacement-seek funding.
13	Treatment	Disinfection by- products	 High raw water turbidity (dependent on nature of turbidity) Plant Design THM monitoring have commenced. All results are below ADWG limits. Biggenden 2018-03: THM monitoring occurs monthly 	Minor	Rare	Low(3)	 Degeneration of sodium hypochlorite unlikely due to the relatively small storage capacity which requires monthly refill Staff aware of potential issues and refill fortnightly if possible 	Minor	Rare	Low (3)	Confident		Seek plant replacement funding for PAC in new plant Seek alternate source and funding to develop
14	Treatment	Physical/chemical Contamination • Turbidity • Manganese • Particulates	 Failure of back-wash of sand filters Failure of dosing equipment or clarifier. High levels of manganese or turbidity. Communication Breakdown Staff error 	Minor	Likely	Medium (8)	 Treatment processes, flocculation, clarifier, oxidisation with chlorine for iron and manganese Operation of filters and clarifier monitored daily. Trained and qualified operators – good housekeeping Biggenden 2018-04: Online turbidity meters installed 	Minor	Unlikely	Low (4)	Confident	Existing measures are robust	Seek plant replacement funding for process upgrades in new plant
15	Treatment	Clearwater reservoir pump failure	 Inadequate maintenance/lack of standby pumps Communication Breakdown 	Moderate	Unlikely	Medium (6)	 Estimated 3 day's supply in tower reservoir. WTP has back- up generator to run clearwater pumps Stand-by pump installed 	Moderate	Rare	Low (3)	Confident	Existing measures are robust	

Page **38** of **323**

No.	Scheme	Hazard	Hazard Source	N	laximum Risk		Existing Preventive		Residual risk		Level of	Comments	Possible and Proposed Further Risk Reduction Actions
NO.	Component	Hazaiu	nazaru Source	Consequence	Likelihood	Risk level	Measures / Barriers.	Consequence	Likelihood	Risk level	Uncertainty	comments	(Risk Management Improvement Plan Actions)
16	Treatment	Perimeter Fence Security	Trespassing or property damage	Moderate	Possible	Medium (9)		Moderate	Possible	Medium (9)	Low	Repair Fencing behind backwash pods	Repair Fencing behind backwash pods
17	Treatment	 Microbial/Turb idity 	Raw water from catchment	Major	Unlikely	Medium (9)	Coagulation, sedimentation, and filtration	Major	Rare	Medium (7)	Low	Jar testing to manage operational efficiency	Seek plant replacement funding for process upgrades in new plant
18	Treatment	 Operational Treatment Failures 	Aged plant	Medium	Possible	High (11)	Various engineering and administrative	Medium	Unlikely	Medium (7)	Low	Plant upgrade required	Seek funding for plant replacement
19	Treatment	Short Circuit in treatment	Section of pipeline joining raw to treated reservoir	Major	Unlikely	Medium (9)	Valving lockout and staff training	Major	Rare	Medium (7)	Low	Remove section of pipe or plate flange	Remove section of pipe or plate flange

4.5 Biggenden Risk Management Measures

In this section, existing preventative measures and the proposed preventative measures are outlined.

Table 4-7 Biggenden Existing and Proposed Preventative Measures

No.	Scheme Component	Hazard	Hazard Source	What are the existing preventative measures?	Do existing preventative measures impact on likelihood &/or consequence?	How effective is/are the existing preventative measure/s & on what basis has this been determined?	Residual risk after preventative measures	Is the level of residual risk acceptable	Proposed measures to reach an acceptable level or residual risk	Responsible Work Unit/ Organisation (& arrangements with external organisation if applicable)
1	Source water	Biological contamination Protozoa	 Livestock Wildlife Issues with Bore Infiltration Septic systems/sewage Recreation 	 The bores are completely enclosed and appropriately cased so stormwater runoff and infiltration is avoided and vermin cannot enter Filtration and coagulation 	Likelihood	Moderately-data	Medium (6)	Yes	Seek alternate source and funding to develop Seek funding for UV in new plant	Major Projects
2	Source water	Biological contamination Bacteria Viruses	 Livestock Wildlife Issues with Bore Infiltration Septic Systems/sewage Recreation 	 The bores are completely enclosed and appropriately cased so storm runoff and infiltration is avoided and vermin cannot enter. Treatment processes – Chlorine disinfection at raw water and at filter stage and leaving clearwater reservoir Coagulation and filtration 	Likelihood	Moderately-data	Medium (6)	Yes	Seek alternate source and funding to develop Seek plant replacement funding for UV in new plant	Major Projects
3	Source water	Chemical contamination Heavy metals: Arsenic	1. Natural arsenic and other chemicals in water	1. Treatment processes, coagulation and filtration .	Likelihood	Moderately-data	Medium (8)	Yes	Seek alternate source and funding to develop Plant replacement funding.	Major Projects
4	Source water	Chemical contamination Nutrients: Nitrate Anions: Sulphate, Fluoride	 Pesticides and Fertilisers Natural occurrences of anions 	1. Treatment processes, coagulation and filtration	Likelihood	Effective - data	Low (4)	Yes	Seek alternate source and funding to develop and PAC dosing in plant replacement	Major Projects
5	Source water	Chemical contamination General metals: Aluminium, Iron, Manganese, Boron, Copper	1. Natural chemicals in water	1. Treatment processes, coagulation, oxidisation with Cl for iron and manganese	Likelihood	Moderately-data	Low (3)	Yes	Seek funding for plant replacement Seek alternate source and funding to develop	Major Projects
6	Source water	Chemical contamination	1. Accidental spills	 Detection and dilution during treatment processes and storage Emergency response 	Likelihood/ consequence	Moderately-data	Low (1)	Yes		
7	Source water	Physical contamination	 Soil erosion Flood waters (high turbidity and colour) Bush fires Major Storms 	 Treatment processes –sand filters Public notification process (boil water alert) 	Likelihood/ consequence	Moderately-data	Low (4)	Yes		
8	Source water	Lack of supply	 Inadequate maintenance Lack or failure of standby pumps Blockage of creek intake structure 	 Estimated one week's supply in reserve at clearwater and tower reservoir. Trucked water from other towns as backup supply 	Likelihood	Unknown-has not occurred before	Medium (5)	Yes	Seek plant replacement funding	Major Projects

No.	Scheme Component	Hazard	Hazard Source	What are the existing preventative measures?	Do existing preventative measures impact on likelihood &/or consequence?	How effective is/are the existing preventative measure/s & on what basis has this been determined?	Residual risk after preventative measures	Is the level of residual risk acceptable	Proposed measures to reach an acceptable level or residual risk	Responsible Work Unit/ Organisation (& arrangements with external organisation if applicable)
9	Source water	Lack of supply	Climatic variations	 Importing water Drought management Plan actions: restrictions, communication etc Increasing WTP operating times 	Likelihood	Moderately-data	Medium (6)	Yes	Option: Ensure DMP is up-to-date and appropriate. Seek alternate source and funding to develop	Major Projects
10	Treatment	Biological contamination Bacteria Viruses	 Failure of chlorine injection Insufficient chlorine residual Loss of Chemical supplies Staff error Plant Design 	 Treatment processes – Chlorine disinfection at raw water and at filter stage and leaving ground reservoir Chlorine levels are tested once per day. Injection pump and chlorine supply are also checked and inspected at the same time. Public notification process (boil water alert) Trained and qualified operators – good housekeeping Security and vermin-proofing Regular cleaning and maintenance of process equipment Biggenden 2013-01 Operation of chlorine injection system have been linked to water flow. Biggenden 2013-02 Online analyser has been installed and alarmed. On-line chlorine and turbidity analysers installed for WTP. Biggenden 2018-02: Spare dosing pump is readily available for use 	Likelihood	Effective-data	Low (3)	Yes	Plant upgrade including UV Seek alternate source and funding to develop	Major Projects
11	Treatment	Biological contamination Protozoa	 Cross contamination Vermin and bird access Staff error Plant Design 	 Security and vermin-proofing Filtration (limited efficacy) Trained and qualified operators – good housekeeping 	Likelihood	Unknown	Low (3)	Yes	Seek plant replacement funding for UV in new plant Seek alternate source and funding to develop	Major Projects
12	Treatment	Chemical contamination	 Chemical overdose due to equipment failure Loss of Chemical supplies Communication breakdown (alarms) Staff error Plant Design 	 Treatment processes, flocculation, clarifier, oxidisation with Cl for iron and manganese Chemical injection levels are tested once per day. Dosing equipment is checked once per day. Trained and qualified operators – good housekeeping 	Likelihood	Effective-Proven processes	Low (4)	Yes	Upgraded systems with plant replacement-seek funding.	Major Projects/ Water and Wastewater
13	Treatment	Disinfection by-products	 High raw water turbidity (dependent on nature of turbidity) Plant Design THM monitoring have commenced. All results are below ADWG limits. Biggenden 2018-03: THM monitoring occurs monthly 	 Degeneration of sodium hypochlorite unlikely due to the relatively small storage capacity which requires monthly refill Staff aware of potential issues and refill fortnightly if possible 	Likelihood	Effective-data	Low (3)	Yes	Seek plant replacement funding for PAC in new plant Seek alternate source and funding to develop	Major Projects

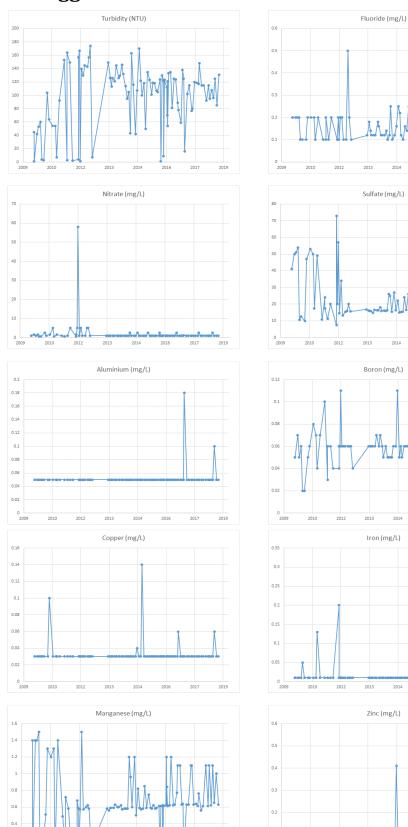
Page **41** of **323**

No.	Scheme Component	Hazard	Hazard Source	What are the existing preventative measures?	Do existing preventative measures impact on likelihood &/or consequence?	How effective is/are the existing preventative measure/s & on what basis has this been determined?	Residual risk after preventative measures	Is the level of residual risk acceptable	Proposed measures to reach an acceptable level or residual risk	Responsible Work Unit/ Organisation (& arrangements with external organisation if applicable)
14	Treatment	Manganese	 Failure of back-wash of sand filters Failure of dosing equipment or clarifier. High levels of manganese or turbidity. Communication Breakdown Staff error 	 Treatment processes, flocculation, clarifier, oxidisation with chlorine for iron and manganese Operation of filters and clarifier monitored daily. Trained and qualified operators – good housekeeping Biggenden 2018-04: Online turbidity meters installed 	Likelihood	Effective-Proven processes	Low (3)	Yes	Seek plant replacement funding for process upgrades in new plant	Major Projects
15	Treatment	Clearwater reservoir pump failure	 Inadequate maintenance/lack of standby pumps Communication Breakdown 	 Estimated 3 day's supply in tower reservoir. WTP has back- up generator to run clearwater pumps Stand-by pump installed 	Likelihood	Effective-Proven processes	Low (3)	Yes		
16	Treatment	Perimeter Fence Security	Trespassing or property damage		N/A	N/A	Medium (9)	No	Repair Fencing behind backwash pods	Water and Wastewater
17	Treatment	Microbial/Turbidity	Raw water from catchment	Coagulation, sedimentation, and filtration	Likelihood	Moderately-data	Medium (9)	No	Seek plant replacement funding for process upgrades in new plant	Major Projects
18	Treatment	Operational Treatment Failures	Aged plant	Various engineering and administrative	Likelihood	Moderately-data	Medium (7)	Yes	Seek funding for plant replacement	Major Projects
19	Treatment	Short Circuit in treatment	Section of pipeline joining raw to treated reservoir	Valving lockout and staff training	Likelihood	Effective-has not occurred before	Medium (7)	Yes	Remove section of pipe or plate flange	Water and Wastewater

4.6 Biggenden Risk Management Improvement Plan

The following table displays the Risk Improvement Program for NBRC. The items identified to reduce risk have been developed to reduce the unacceptable risks identified in Table 4-6 and are shown in blue shaded boxes. General improvement items have also been listed here.

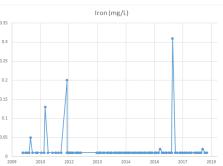
Table 4-8 Biggenden Risk Management Improvement Program

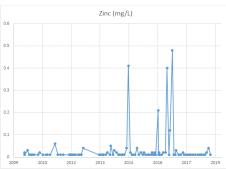

No.	Scheme Component	Hazard	Hazard Source	Priority	Risk Improvement Actions-Short Term	Risk Improvement Actions- Long-term	Target Dates	Estimated Costs	Responsibility
1	Source water	Biological contamination Protozoa	 Livestock Wildlife Issues with Bore Infiltration Septic systems/sewage Recreation 	High	Seek funding to develop new source(s)	Seek funding to develop new source(s)	30/6/2022; 30/6/2024	\$400,000	Major Projects
2	Source water	Biological contamination Bacteria Viruses	 Livestock Wildlife Issues with Bore Infiltration Septic Systems/sewage Recreation 	High	Seek funding to develop new source(s)	Seek funding to develop new source(s)	30/6/2022; 30/6/2024	\$400,000	Major Projects
3	Source water	Chemical contamination Heavy metals: Arsenic	1. Natural arsenic and other chemicals in water	High	Seek funding to develop new source(s)	Seek funding to develop new source(s)	30/6/2022; 30/6/2024	\$400,000	Major Projects
4	Source water	Chemical contamination Nutrients: Nitrate Anions: Sulphate, Fluoride	 Pesticides and Fertilisers Natural occurrences of anions 	Medium	Seek funding to develop new source(s)	Seek funding to develop new source(s)	30/6/2022; 30/6/2024	\$400,000	Major Projects
5	Source water	Chemical contamination General metals: Aluminium, Iron, Manganese, Boron, Copper	1. Natural chemicals in water	Medium	Seek funding to develop new source(s)	Seek funding to develop new source(s)	30/6/2022; 30/6/2024	\$400,000	Major Projects

No.	Scheme	Hazard	Hazard Source	Priority	Risk Improvement	Risk Improvement Actions-	Target	Estimated	Responsibility
	Component			,	Actions-Short Term	Long-term	Dates	Costs	
8	Source water	Lack of supply	 Inadequate maintenance Lack or failure of standby pumps Blockage of creek intake structure 	Medium	Seek funding to develop new source(s)	Seek funding to develop new source(s)	30/6/2022; 30/6/2024	\$400,000	Major Projects
9	Source water	Lack of supply	Climatic variations	Medium	Seek funding to develop new source(s)	Seek funding to develop new source(s)	30/6/2022; 30/6/2024	\$400,000	Major Projects
10	Treatment	Biological contamination Bacteria Viruses	 Failure of chlorine injection Insufficient chlorine residual Loss of Chemical supplies Staff error Plant Design 		Seek Funding for new plant with upgraded processes	Seek funding to renew and upgrade WTP	01/10/21; 30/6/2023	\$7.2M	Major Projects
11	Treatment	Biological contamination Protozoa	 Cross contamination Vermin and bird access Staff error Plant Design 		Seek Funding for new plant with upgraded processes	Seek funding to renew and upgrade WTP	01/10/21; 30/6/2023	\$7.2M	Major Projects
12	Treatment	Chemical contamination	 Chemical overdose due to equipment failure Loss of Chemical supplies Communication breakdown (alarms) Staff error Plant Design 		Seek Funding for new plant with upgraded processes	Seek funding to renew and upgrade WTP	01/10/21; 30/6/2023	\$7.2M	Major Projects/ Water and Wastewater
13	Treatment	Disinfection by-products	 High raw water turbidity (dependent on nature of turbidity) Plant Design THM monitoring have commenced. All results are below ADWG limits. Biggenden 2018-03: THM monitoring occurs monthly 		Seek Funding for new plant with upgraded processes	Seek funding to renew and upgrade WTP	01/10/21; 30/6/2023	\$7.2M	Major Projects

No.	Scheme Component	Hazard	Hazard Source	Priority	Risk Improvement Actions-Short Term	Risk Improvement Actions- Long-term	Target Dates	Estimated Costs	Responsibility
14	Treatment	Physical/chemical Contamination Turbidity Manganese Particulates	 Failure of back-wash of sand filters Failure of dosing equipment or clarifier. High levels of manganese or turbidity. Communication Breakdown Staff error 		Seek Funding for new plant with upgraded processes	Seek funding to renew and upgrade WTP	01/10/21; 30/6/2023	\$7.2M	Major Projects
16	Treatment	Perimeter Fence Security	Trespassing or property damage		Repair Fencing behind backwash pods		30/08/2022	\$5000	Water and Wastewater
17	Treatment	Microbial/Turbidity	Raw water from catchment		Seek Funding for new plant with upgraded processes	Seek funding to renew and upgrade WTP	01/10/21; 30/6/2023	\$7.2M	Major Projects
18	Treatment	Operational Treatment Failures	Aged plant		Seek Funding for new plant with upgraded processes	Seek funding to renew and upgrade WTP	01/10/21; 30/6/2023	\$7.2M	Major Projects
19	Treatment	Short Circuit in treatment	Section of pipeline joining raw to treated reservoir		Remove section of pipe or plate flange		01/10/21; 30/6/2023	Operational	Water and Wastewater

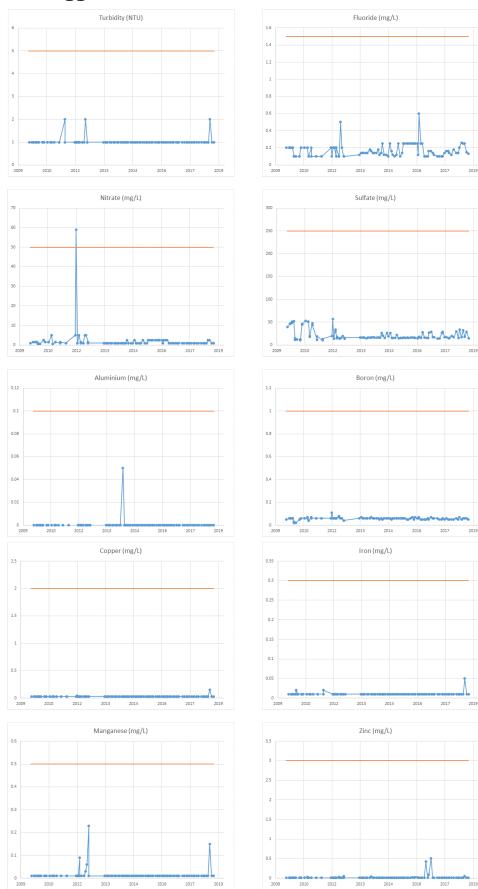
4.7 Biggenden Water Scheme Water Quality Data


The results are spread across the twelve-month period of the year indicated. Note the orange lines indicate the ADWG limits.



Biggenden untreated bore water 2010-2018

2014 2016 2017 2019 Boron (mg/L)



2014

0.2

Biggenden WTP treated water 2010-2018

5. EIDSVOLD WATER SUPPLY SCHEME

5.1 Details of Infrastructure for Providing the Service

Source Water

The Eidsvold Water Supply Scheme is based on ground water extraction from two alluvial bores adjacent to the Burnett River four kilometres southwest of the town. SunWater are the independent supplier of bulk water in the Upper Burnett Water Supply Scheme and NBRC receive a priority water allocation. The bore intake infrastructure is owned and operated by NBRC.

The two alluvial bores were commissioned in 1990 and refurbished in 1999/2000 and 2020/2021 to increase their capacity. The rivers beds sand substrate provides an initial filtration of the water before it enters the WTP. The raw water contains significant amounts of iron and manganese.

Treatment Process

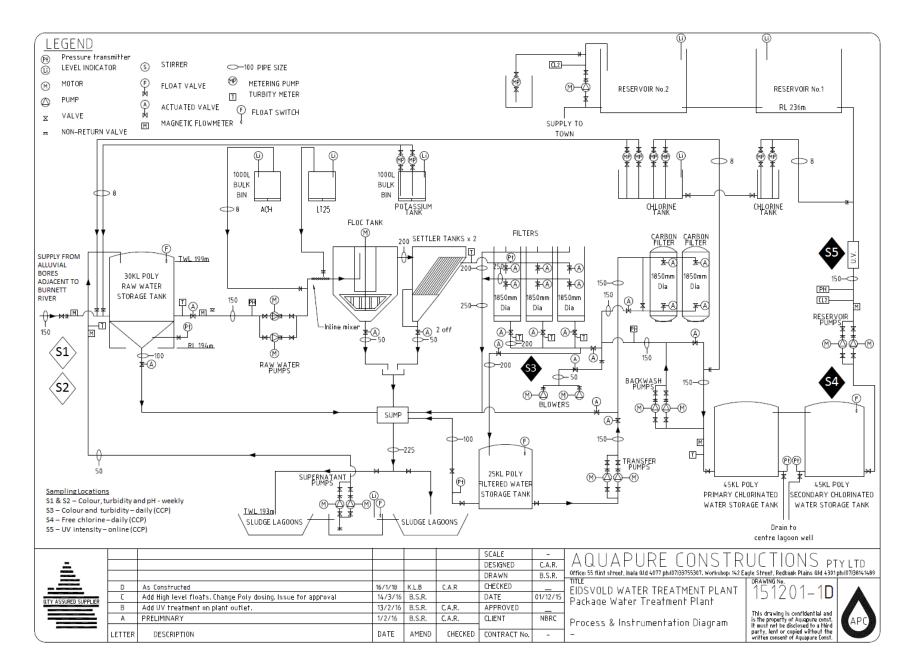
New WTP (2016)

In 2016, a new WTP, commissioned by NBRC on a design and construct basis was installed.

Raw water is pumped from the bores, it is dosed with potassium permanganate and it passes through a static mixer, it is dosed with ACH and Polymer prior to entry to the floc tank. From there, the water flows through the two Lamella Separators. Water then passes through three gravity media filters to the filtered water storage tank. It is then pumped through the Carbon Pressure Filters before entering the treated water storage tanks. It is then pumped through to Reservoir 1 receiving UV and sodium hypochlorite disinfection as it leaves the WTP.

The chlorine disinfection effectiveness of the plant was calculated to verify that the chlorine critical limits value required for primary kill is satisfied. Chlorination effectiveness is usually determined based on chlorine contact time (C.t). This is calculated by using the following formula:

$$C.t = C \times BF \times \frac{V}{F}$$


Where,

C = minimum free chlorine concentration at outlet of the secondary chlorinated water storage tank (2 mg/L)

BF = baffling factor or the tanks, here assumed to be 0.1 (ie no baffles)

V = volume, pipe volume post dosing point (0.09 m³) plus tank volume (2 x 76.3 m³)F = flowrate (0.51 m³/min)

Therefore, the C.t for the critical limit is 30.0 mg/m³.min. A 4-log removal of *E. coli* requires a C.t of 15 mg/m³.min, and 4-log removal of viruses at pH 7.5 and 22°C requires a C.t of about 3 mg/m³.min. Therefore, the chlorine critical limit meets the 4-log removal of *E. coli* and viruses.

Drinking Water Quality Management Plan

Figure 5-1 Eidsvold WTP Schematic

Distribution

After filtration, water is pumped to Ground Level Reservoir 1 located on Hospital Hill which has a capacity of 450kL. In 1984 an additional reservoir, Ground Level Reservoir 2, (750kL) was constructed on Airport Road to improve water pressure and quantity in the northern section of the township. Ground Level Reservoir 2 is filled by gravity flow through the reticulation mains from Ground Level Reservoir 1. The reticulation system supplies the town and has offshoots feeding semi-rural areas. Reservoir 2 chlorine dosing point is activated by low level reading (<1mg/L) on localised chlorine analyser.

Sampling locations are sited at key points determined to provide the best indication of chlorine residual levels in the system. Samples are also taken as water leaves the reservoir. Chlorine residuals in the network are sampled and tested on-site weekly. Raw water and treated water samples are sent regularly to the Queensland Health Laboratory for chemical analysis. Raw water and treated water samples are sent regularly to the Qld Health Laboratory for biological testing.

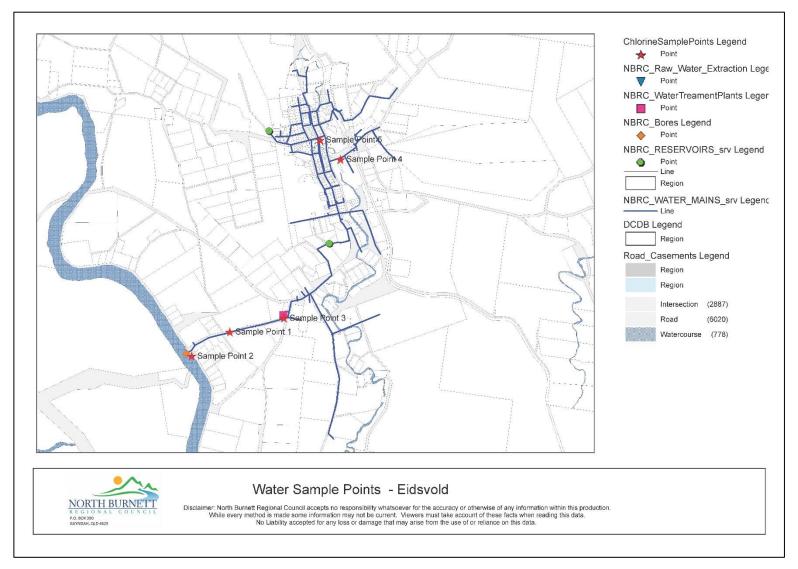


Figure 5-2 Eidsvold Water Supply Map

	Component	Scheme			
	Name	Burnett River			
	Туре	2 x spears			
Sources	% of supply	100%			
	Reliability	High reliability with back up pumps			
	Water quality issues	High iron and manganese			
		Pumped spear x 2			
	Туре	Submersible bore 5.4kL/hr			
		Submersible bore 6.5kL/hr			
		Adjacent to Burnett River			
Sourcing Infrastructure		Age = 28 years old			
	Description	Casing = Steel			
		Diameter = DN250			
		Depth = 10m			
	Ownership	NBRC			
Are there any sources that do not undergo treatment prior to supply?	No				
	Name	Eidsvold WTP			
		Pre-dosing for oxidation			
Eidsvold WTP		Flocculation and coagulation			
	Process	Sedimentation			
		Multimedia Filtration			
		Carbon filters			

Drinking Water Quality Management Plan

	Component	Scheme					
		U.V					
	Design Capacity (20 hr operation)	62kL/hr					
	Daily flow range	8L/s – 18L/s					
	Chemicals added	Sodium hypochlorite, potassium permanganate, ACH, Magnafloc LT 25 Polymer					
	Standby chemical dosing facilities (Y/N)	Ν					
	Water sourced from and %	Burnett River spears 100%					
	% of average day demand provided	100%					
	% of scheme supply	100%					
	Distribution area supplied	100%					
	Bypasses / Variations	Bypasses available but are clearly labelled gate valves which are valved shut.					
	Location	At plant					
	Туре	Liquid sodium hypochlorite via diaphragm dosing pump					
	Daily flow range Chemicals added Standby chemical dosing facilities (Y/N) Water sourced from and % % of average day demand provided % of scheme supply Distribution area supplied Bypasses / Variations Location	Based on in-line analyser					
Distate	Target residual levels	0.5 mg/l					
Disinfection	Duty/standby	Nil					
	Dosing arrangements	Manually set depending on hypo strength and raw water quality					
	Alarms	Through SCADA					
	Auto shut-off arrangements	Yes					
	Pipe material	Asbestos cement					
	Age range	45-55 years					
Distribution and Reticulation System	Approx % of total length	90%					
neticulation system	Pipe material	Poly					
	Age range	5-10 years					

	Component	Scheme
	Approx % of total length	10%
	Areas where potential long detention periods could be expected	Both ground reservoirs Rural residential end of pipelines
	Areas where low water pressure (e.g. < 12 m) could be expected during peak or other demand periods)	This will generally occur at extremities of the distribution network in rural residential areas.
	Ground (No)	1
	Name	Reservoir 1
	Capacity (ML)	0.450
	Roofed (Y/N)	Y
	Vermin-proof (Y/N)	Y
	Runoff directed off roof (Y/N)	Y
Reservoirs	Ground (No)	2
	Name	Reservoir 2
	Capacity (ML)	0.750
	Roofed (Y/N)	Y
	Vermin-proof (Y/N)	Y
	Runoff directed off roof (Y/N)	Y

5.2 Eidsvold Water Quality: Identifying Hazards and Hazardous Events

Water quality information has been collected by NBRC for raw water, treated water and reticulated supply for the period of February 2010 to November 2018. Analysis of this data has been completed to assess the results in comparison to the ADWG guideline values for parameters measured. It is noted that no SunWater water quality data was reviewed for raw water.

A summary of the water analysis undertaken for the Eidsvold Water Supply Scheme is contained in Table 5-2, Table 5-3, Table 5-4 and Table 5-5. Section 5.7 includes graphs of sampling data.

For raw water and treated water the following parameters have been measured monthly:

- Conductivity
- pH
- Total & temporary hardness
- Alkalinity (including residual)
- Silica
- Total dissolved ions
- Total dissolved solids
- True colour
- Turbidity
- Saturation index
- Mole ratio
- Sodium absorption ratio

- Figure of merit ratio
- Cations (sodium, potassium, calcium, magnesium, and hydrogen)
- Anions (bicarbonate, carbonate, hydroxide, chloride, fluoride, nitrate, sulphate)
- Dissolved metals (iron, manganese, zinc, boron, copper, aluminium)
- Total metals (aluminium, arsenic, cadmium, chromium, copper, iron, lead, manganese, nickel, zinc)
- THM

The reticulated water scheme has been tested for pH, residual chlorine, E. coli and total coliforms.

Interpretation

Over the period of testing there has been a higher rate of sampling for Eidsvold compared to other schemes with approximately two tests per month for both raw water and treated water. The reticulated scheme was tested weekly for *E.coli* to QHFSS.

Within the raw water test results, manganese, iron, and turbidity sometimes exceed the guideline value for treated water; all other values are below the guideline values for treated water.

Test results on samples taken from the Eidsvold WTP show six occurrences of turbidity exceeding the guideline value of 5 NTU and eleven occurrences of manganese exceeding the guideline value of 0.1 mg/L during the period January 2010 to November 2018. Current practice has improved monitoring and sampling which has reduced the possibility of manganese dropping out after treatment.

Within the reticulation system test results, there were many occurrences when residual chlorine fell below the ADWG recommended value. One *E. coli* detection was recorded in 2018. There were potential water quality issues within the reticulation system due to low levels of residual chlorine. Increased frequency of sampling and testing, recording, and operational response, has since reduced this risk.

Table 5-2 Eidsvold Raw Water Source

			Ei	dsvold Source – Burn	ett River Bores		
Parameter					Summary of Results		
(mg/L unless otherwise specified)	otherwise location	Time Period	No of samples	Maximum Value	Average Value	Minimum Value	Comments
Turbidity (NTU)	Bore	Feb 2010 – Nov 2018	313	84	9.49	<1	Bore name should be recorded to distinguish between bores
Fluoride	Bore	Feb 2010 – Nov 2018	314	0.5	0.17	0.1	
Nitrate	Bore	Feb 2010 – Nov 2018	314	1	0.6	<0.5	Multiple limits of detection were used (<0.5 and <1). In order to calculate the stats, the absolute values were used.
Sulfate	Bore	Feb 2010 – Nov 2018	314	68	23.2	4.5	
Dissolved metals							
Aluminium	Bore	Feb 2010 – Nov 2018	314	0.05	0.05	<0.01	Multiple limits of detection were used (<0.01 and <0.05). In order to calculate the stats, the absolute values were used.
Boron	Bore	Feb 2010 – Nov 2018	314	0.1	0.05	0.03	
Copper	Bore	Feb 2010 – Nov 2018	314	0.14	0.03	<0.03	
Iron	Bore	Feb 2010 – Nov 2018	314	0.48	0.02	<0.01	
Manganese	Bore	Feb 2010 – Nov 2018	314	1.6	0.5	<0.01	
Zinc	Bore	Feb 2010 – Nov 2018	314	1.4	0.03	<0.01	Multiple limits of detection were used (<0.01 and <0.1). In order to calculate the stats, the absolute values were used.
Total metals			-				
Aluminium	Bore 1	Nov 2017	1	0.006	0.006	0.006	Single sample
Arsenic	Bore 1	Nov 2017	1	0.012	0.012	0.012	Single sample

Drinking Water Quality Management Plan

	Eidsvold Source – Burnett River Bores											
Parameter					Summary of Results							
(mg/L unless otherwise specified)	Sampling location	Time Period	No of samples	Maximum Value	Average Value	Minimum Value	Comments					
Cadmium	Bore 1	Nov 2017	1	<0.0001	<0.0001	<0.0001	Single sample					
Chromium	Bore 1	Nov 2017	1	<0.0001	<0.0001	<0.0001	Single sample					
Copper	Bore 1	Nov 2017	1	0.001	0.001	0.001	Single sample					
Iron	Bore 1	Nov 2017	1	0.56	0.56	0.56	Single sample					
Lead	Bore 1	Nov 2017	1	0.0004	0.0004	0.0004	Single sample					
Manganese	Bore 1	Nov 2017	1	0.37	0.37	0.37	Single sample					
Nickel	Bore 1	Nov 2017	1	0.0007	0.0007	0.0007	Single sample					
Zinc	Bore 1	Nov 2017	1	0.002	0.002	0.002	Single sample					

Table 5-3 Eidsvold Treated Water

	Eidsvold WTP										
Plant			No of Samples taken in time period	Sun	Summary of results			No of samples			
Parameter (mg/L unless otherwise specified)	Sampling location(s)	Time Period		Maximum value	Average value	Minimum value	Water Guidelines guideline value for health unless otherwise specified	exceeding Australian Drinking Water Guidelines guideline value	Comment		
Turbidity (NTU)	WTP	Feb 2010 – Nov 2018	307	22	1.3	<1	5	6	Aesthetic guideline only Exceedances in June 2011, Jan 2013, July 2013 and Sept 2013		

					Eidsvold WTP	•			
Plant				Sur	nmary of resu	ilts	Australian Drinking	No of samples	
	Sampling location(s)		No of samples taken in time period	Maximum value	Average value	Minimum value	Water Guidelines guideline value for health unless otherwise specified	exceeding Australian Drinking Water Guidelines guideline value	Comment
Fluoride	WTP	Feb 2010 – Nov 2018	308	0.30	0.17	0.09	1.5	0	
Nitrate	WTP	Feb 2010 – Nov 2018	308	2.5	0.6	<0.5	50	0	Aesthetic guideline only Multiple limits of detection were used (<0.5 to <2.5). In order to calculate the stats, the absolute values were used.
Sulfate	WTP	Feb 2010 – Nov 2018	308	66	24	4.4	250	0	Aesthetic guideline only
Dissolved metals									
Aluminium	WTP	Feb 2010 – Nov 2018	308	<0.05	<0.05	<0.05	0.1	0	Although 0.2mg/L is the aesthetic guideline value, <0.1 mg/L is desirable
Boron	WTP	Feb 2010 – Nov 2018	308	0.1	0.05	0.03	1	0	Although 4mg/L is the health guideline value, concentrations in uncontaminated sources is usually <1 mg/L
Copper	WTP	Feb 2010 – Nov 2018	308	0.07	0.03	<0.03	2 (1)	0	Number in brackets denotes the aesthetic guideline value
Iron	WTP	Feb 2010 – Nov 2018	308	0.16	0.014	<0.01	0.3	0	Aesthetic guideline only

					Eidsvold WTP	,			
Plant				Sur	nmary of resu	ılts	Australian Drinking	No of samples	
Parameter (mg/L unless otherwise specified)	Sampling location(s)	Sampling Decation(s) Time Period Samples taken in time period Value Value Value Value Value Otherwise s	Water Guidelines guideline value for health unless otherwise specified	exceeding Australian Drinking Water Guidelines guideline value	Comment				
Manganese	WTP	Feb 2010 – Nov 2018	308	0.8	0.02	<0.01	0.5 (0.1)	3	Number in brackets denotes the aesthetic guideline value Most samples below detection limit
									Exceedances in May 2012, July 2012 and July 2013
Zinc	WTP	Feb 2010 – Nov 2018	308	2.0	0.02	<0.01	3	0	
Total metals				_					
Aluminium	WTP	Nov 2017	2	0.18	0.095	0.01	0.2	0	Although 0.2mg/L is the aesthetic guideline value, <0.1 mg/L is desirable
Arsenic	WTP	Nov 2017	2	0.0075	0.0055	0.0035	0.01	0	
Cadmium	WTP	Nov 2017	2	<0.0001	<0.0001	<0.0001	0.002	0	All samples were <0.0001 mg/L
Chromium	WTP	Nov 2017	2	0.0015	0.00145	0.0014	0.05	0	
Copper	WTP	Nov 2017	2	0.011	0.006	<0.001	2 (1)	0	Number in brackets denotes the aesthetic guideline value
Iron	WTP	Nov 2017	2	0.12	0.064	0.008	0.3	0	Aesthetic guideline only
Lead	WTP	Nov 2017	2	0.0005	0.0003	<0.0001	0.01	0	

	Eidsvold WTP											
Plant				Sun	nmary of resu	lts	Australian Drinking	No of samples				
Parameter (mg/L unless otherwise specified)	Sampling location(s)	Time Period	No of Samples taken in time period	Maximum value	Average value	Minimum value	Water Guidelines guideline value for health unless otherwise specified	exceeding Australian Drinking Water Guidelines guideline value	Comment			
Manganese	WTP	Nov 2017	2	0.45	0.23	0.012	0.5 (0.1)	2	Number in brackets denotes the aesthetic guideline value. Exceedances in November 2017			
Nickel	WTP	Nov 2017	2	0.0023	0.0017	0.0012	0.02	0				
Zinc	WTP	Nov 2017	2	0.008	0.0045	<0.001	3	0	Aesthetic guideline only			

Table 5-4 Eidsvold Reticulated Water

Scheme Sampling Location	-	Eidsvold Reticulated Water									
Parameter (mg/L unless otherwise specified)	Time Period	No of samples	Su Maximum Value	mmary of Result Average Value	s Minimum Value	Australian Drinking Water Guidelines guideline value for health unless otherwise specified	No of samples exceeding Australian Drinking Water Guidelines guideline value	Comment			
pH (pH units)	Feb 2010 – Nov 2018	308	8.2	7.7	7.04	6.5 - 8.5	0	Aesthetic guideline only			

Scheme Sampling Location	-	Eidsvold Reticulated Water											
Parameter (mg/L unless otherwise specified)	Time Period	No of samples	Si	ummary of Result	:S	Australian Drinking Water Guidelines guideline value	No of samples exceeding Australian Drinking Water Guidelines guideline value	Comment					
			Maximum Value	Average Value	Minimum Value	 for health unless otherwise specified 							
Disinfectant residual	July 2016 – Nov 2018	261	5.7	1.5	0	>0.2 - 0.5	3	Guideline value is from the World Health Organization's Guidelines for Drinking-water Quality 4 th edition Chlorine residual of zero in Oct and Nov 2017, and 0.16 mg/L in Nov 2016					
Total coliforms (mpn/100mL)	July 2016 – Nov 2018	264	32	0.2	0	NA	NA						
<i>E. coli</i> (CFU/100mL)	July 2016 – Nov 2018	264	9	0.03	0	None detected	1	Failures occurred in Mar 2018					
Trihalomethanes	Sept 2016	1	0.12	0.12	0.12	0.25	0						

Table 5-5 Eidsvold Water Quality Complaints

Year	No of Water Quality Complaints	Water Quality Complaints per 1000 Connections	Main Reasons for Complaints	Likely Sources / Causes of Problems	Resolution of Problem
1-7-2010 to 26-10-2018	9	30.3	- Taste 1 - Colour 8	- High turbidity in source water	- More frequent backwashing

5.3 Eidsvold Catchment Characteristics

The town of Eidsvold, population 567, lies approximately 75 kilometres south of Monto and 35 kilometres north of Mundubbera.

Eidsvold is supplied from two alluvial bores on the Burnett River. The catchment includes the entire Burnett River/Three Moon Creek system to the north of the town. The topography varies from flats along the Burnett River to undulating and hilly grassland interspersed with natural forest. Cattle grazing is the chief economic activity across 90% of the catchment (discounting national parks) with the remainder accounted for by a few small isolated agricultural areas further north on the main road to Monto.

The raw water bores are sealed and impervious to stormwater run-off and flooding, though water quality is affected by high turbidity when the Burnett River floods. Bores are operated alternately.

Risk to water quality in the Burnett River catchment are numerous including possible physical, biological, and chemical contamination caused by cattle, fertilisers, pesticides, and herbicides associated with fodder cropping. Other risks include natural events such as flooding and drought, or accidental spillage of chemicals on the main road to Monto which intersects the Burnett River north of Eidsvold.

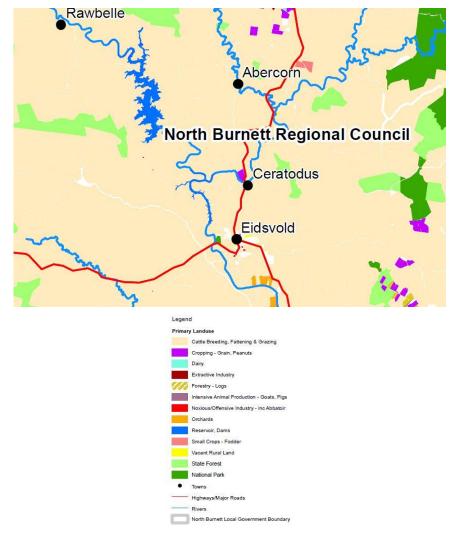


Figure 5-3 Eidsvold Catchment area

5.4 Eidsvold Hazard Identification, Risk Assessment and Uncertainty

Table 5-6 Eidsvold Hazard Identification, Risk Assessment and Uncertainty

				Ma	aximum Risk				Residual risk				Possible and Proposed
No.	Scheme Component	Hazard	Hazard Source	Consequence	Likelihood	Risk level	Existing Preventive Measures / Barriers.	Consequence	Likelihood	Risk level	Level of Uncertainty	Comments	Further Risk Reduction Actions (Risk Management Improvement Plan Actions)
1	Source water	Biological Contamination • Protozoa	 Livestock Wildlife Issues with Bore Infiltration Septic systems/sewage Recreation 	Catastrophic	Unlikely	High (10)	1. The bores are sealed and appropriately cased so storm runoff and infiltration is avoided and vermin cannot enter.	Catastrophic	Rare	Medium (6)	Confident	Existing measures are robust	
2	Source water	Biological Contamination • Bacteria • Viruses	 Livestock Wildlife Issues with Bore Infiltration Septic Systems/sewage Recreation 	Catastrophic	Unlikely	High (10)	 The bores are sealed and appropriately cased so storm runoff and infiltration are avoided and vermin cannot enter. Treatment processes – U.V, Chlorine disinfection at raw water stage 	Catastrophic	Rare	Medium (6)	Confident	Existing measures are robust	
3	Source water	Contamination Heavy metals 	1. Natural heavy metals and other chemicals in water	Major	Unlikely	Medium (8)	1. Treatment processes, flocculation coagulation, clarifier, filtration, U. V	Major	Rare	Medium (5)	Confident	Existing measures are robust	Pre-dosing potassium permanganate in raw water
4	Source water	Contamination Nutrients: Nitrate Anions: Sulphate, Fluoride 	1. Pesticides and Fertilisers	Minor	Possible	Medium (6)	1. Treatment processes, flocculation, coagulation, clarifier, filtration, G.A.C	Minor	Unlikely	Low (4)	Confident	Existing Measures are robust	
5	Source water	Contamination • General metals: Aluminium, Iron, Manganese, Boron, Copper	 Pesticides and Fertilisers Natural chemicals in water 	Moderate	Unlikely	Medium (6)	 Treatment processes, flocculation, clarifier, oxidisation with Cl or KMnO₄ for iron and manganese, filtration 	Moderate	Rare	Low (3)	Confident	Existing Measures are robust	Pre-dosing potassium permanganate in raw water
6	Source water	Chemical Contamination	1. Accidental spills	Moderate	Rare	Low (3)	 Detection and dilution during treatment processes and storage Emergency response, G.A.C Public notification process (do not drink alert) 	Insignificant	Rare	Low (1)	Uncertain	Small concentration. Only risk of any real consequence would be a chemical spill near the intake Inability to predict type or consistency of possible spill?	
7	Source water	Physical Contamination • Ash • Mud	 Soil erosion Flood waters (high turbidity and colour) Bush fires Major Storms 	Minor	Possible	Medium (6)	 Bores Treatment processes – sand filters, coagulation, flocculation, sedimentation Public notification process water restrictions 	Minor	Unlikely	Low (4)	Confident	Occasional flooding of Burnett River can't be avoided.	
8	Source water	Lack of supply	 Inadequate maintenance Lack of standby pumps power failure 	Moderate	Unlikely	Medium (6)	 Two alternative sources of supply with individual pumps. Estimated one week's supply in both reservoirs 	Moderate	Rare	Low (3)	Reliable	Although there is no backup power source, the reserve capacity of supply would allow plenty of time to get a generator on-site	
9	Source water	Lack of supply	1. Climatic variations	Moderate	Unlikely	Medium (6)	 Importing water Drought Management Plan actions : restrictions, communication etc. 	Moderate	Rare	Low (2)	Uncertain	Uncertainty in future climate	
10	Treatment	Biological contamination • Bacteria • Viruses	 Failure of chlorine injection Insufficient chlorine residual 	Major	Possible	High (12)	 Treatment processes – Chlorine disinfection primary and secondary chlorinated water storage tanks Chlorine levels are tested continuously. 	Major	Rare	Medium (5)	Estimate		UV Operational review

			Hazard Source	Maximum Risk					Residual risk				Descible and Drenesed
No.	Scheme Component	Hazard		Consequence	Likelihood	Risk level	Existing Preventive Measures / Barriers.	Consequence	Likelihood	Risk level	Level of Uncertainty	Comments	Possible and Proposed Further Risk Reduction Actions (Risk Management Improvement Plan Actions)
			3. Loss of Chemical				Injection pump and chlorine supply are also checked and inspected Monday to Friday.						
			supplies 4. Staff error				4. Public notification process (boil water alert)						
			4. Stan en or				 Trained and qualified operators – good housekeeping 						
							6. Security and vermin-proofing						
							 Regular cleaning and maintenance of process equipment 						
							8. U.V						
							Eidsvold 2013-02: On-line chlorine analyser is installed and alarmed to SCADA						
							Eidsvold 2013-03: Chlorine levels in reticulation system are tested at least weekly.						
							Eidsvold 2013-04: Additional chlorine injection system installed on the Airport Rd reservoir						
							Monitor chlorine dosage as needed						
11	Treatment	Biological contamination • Protozoa	 Cross contamination Vermin and bird access Staff error Plant Design 	Catastrophic	Rare	Medium (6)	 Security and vermin-proofing Filtration Trained and qualified operators – good housekeeping U.V 	Catastrophic	Rare	Medium (6)	Reliable	Inability to detect contamination in the treatment process	UV Operational review
12	Treatment	Chemical contamination	 Chemical overdose due to equipment failure Loss of Chemical supplies Communication Breakdown (alarms) Staff error Plant Design 	Moderate	Possible	Medium (9)	 Treatment processes, flocculation, clarifier, oxidisation with Cl for iron and manganese Chemical injection levels monitored on SCADA Dosing equipment is checked once per day. Trained and qualified operators – good housekeeping Eidsvold 2013-02: On-line chlorine analyser is installed and alarmed to SCADA Eidsvold 2013-05: Control logic for chemical addition to be re-programmed to be a function of raw water flow. A new treatment plant has been constructed towards the end of 2016. 	Moderate	Rare	Low (3)	Reliable		
13	Treatment	Disinfection by-products	 High raw water turbidity (dependent on nature of turbidity) Plant Design 	Major	Rare	Medium (5)	 Degeneration of sodium hypochlorite unlikely due to the relatively small storage capacity which requires monthly refill. Eidsvold 2018-01: THM monitoring occurs monthly 	Major	Rare	Medium (5)	Confident		
14	Treatment	Physical/chemical contamination	1. Failure of back-wash of sand filters	Minor	Rare	Low (2)	 Chlorine dosing Post treatment monitoring 	Minor	Rare	Low (2)	Confident	Existing measures are robust	

Page **66** of **323**

				M	aximum Risk				Residual risk				Possible and Proposed
No.	Scheme Component	Hazard	Hazard Source	Consequence	Likelihood	Risk level	Existing Preventive Measures / Barriers.	Consequence	Consequence Likelihood		Level of Uncertainty	Comments	Further Risk Reduction Actions (Risk Management Improvement Plan Actions)
		 Turbidity Manganese Particulates 	 Failure of dosing equipment or clarifier. High levels of Manganese or turbidity. Communication Breakdown Staff error 				 Operation of filters and clarifier monitored daily. Trained and qualified operators – good housekeeping 						
15	All	• Sabotage or natural disaster causing contamination or supply failure		Major	Rare	Medium (5)	 Bores are adequately sealed Treatment plant fenced and locked 	Moderate	Rare	Low (3)	Confident	All practical steps have been taken	

5.5 Eidsvold Risk Management Measures

In this section existing preventative measures and proposed preventative measures are considered in greater detail.

 Table 5-7 Eidsvold Existing and Proposed Preventative Measures

No.	Scheme Component	Hazard	Hazard Source	What are the existing preventative measures?	Do existing preventative measures impact on likelihood &/or consequence?	How effective is/are the existing preventative measure/s & on what basis has this been determined?	Residual risk after preventative measures	Is the level of residual risk acceptable	Options and Proposed measures to reach an acceptable level or residual risk	Responsible Work Unit/ Organisation (& arrangements with external organisation if applicable)
1	Source water	Biological contamination • Protozoa	 Livestock Wildlife Issues with Bore Infiltration Septic systems/sewage Recreation 	 The bores are completely enclosed and appropriately cased so storm runoff and infiltration is avoided and vermin cannot enter. 	Likelihood	Unknown	Medium (6)	Yes		
2	Source water	Biological contamination • Bacteria • Viruses	 Livestock Wildlife Issues with Bore Infiltration Septic Systems/sewage Recreation 	 The bores are completely enclosed and appropriately cased so storm runoff and infiltration is avoided and vermin cannot enter. Treatment processes – Chlorine disinfection at raw water stage 	Likelihood	Effective-data	Medium (6)	Yes		
3	Source water	Chemical contamination • Heavy metals: Arsenic	1. Natural heavy metals and other chemicals in water	1. Treatment processes, oxidation, flocculation, clarifier and filtration	Likelihood	Effective, as supported by results	Medium (5)	Yes		
4	Source water	Chemical contamination • Nutrients: Nitrate • Anions: Sulphate, Fluoride	1. Pesticides and Fertilisers	1. Treatment processes, flocculation, clarifier, and filtration	Likelihood	Effective, as supported by results	Low (4)	Yes		
5	Source water	Chemical contamination • General metals: Aluminium, Iron, Manganese, Boron, Copper	 Pesticides and Fertilisers Natural chemicals in water 	 Treatment processes, flocculation, clarifier, filtration, oxidisation with Cl or KMnO₄ for iron and manganese 	Likelihood	Effective, as supported by results	Low (3)		Pre-dosing potassium permanganate in raw water	
6	Source water	Chemical contamination	1. Accidental spills	 Detection and dilution during treatment processes and storage Emergency response Public notification process (do not drink alert) 	Consequence	Unknown as has not occurred	Low (1)	Yes		
7	Source water	Physical contamination • Ash • Mud	 Soil erosion Flood waters (high turbidity and colour) Bush fires Major Storms 	 Treatment processes – flocculation, clarifier, and filtration Public notification process (boil water alert) 	Likelihood	Effective in reducing turbidity as per water quality samples	Low (4)	Yes		
8	Source water	Lack of supply	 Inadequate maintenance Power failure 	 Two alternative sources of supply with individual pumps. Estimated one weeks supply in both reservoirs 	Likelihood	Effective- multiple backups and past history	Low (3)	Yes		
9	Source water	Lack of supply	1. Climatic variations	 Importing water Drought management Plan actions: restrictions, communication etc. 	Likelihood	Effective – based on community compliance water restriction	Low (2)	Yes		
10	Treatment	Biological contamination	 Failure of chlorine injection Insufficient chlorine residual 	1. Treatment processes – flocculation, clarifier, and filtration Chlorine disinfection at raw water stage	Likelihood	Effective	Medium (5)	Yes	UV Operational review of UV	Water and Wastewater

No.	Scheme Component	Hazard	Hazard Source	What are the existing preventative measures?	Do existing preventative measures impact on likelihood &/or consequence?	How effective is/are the existing preventative measure/s & on what basis has this been determined?	Residual risk after preventative measures	Is the level of residual risk acceptable	Options and Proposed measures to reach an acceptable level or residual risk	Responsible Work Unit/ Organisation (& arrangements with external organisation if applicable)
		• Bacteria • Viruses	 3. Loss of Chemical supplies 4. Staff error 5. Plant Design 	 Chlorine levels are tested once per day. Injection pump and chlorine supply are also checked and inspected at the same time. Public notification process (boil water alert) Trained and qualified operators – good housekeeping Security and vermin-proofing Regular cleaning and maintenance of process equipment Eidsvold 2013-02: On-line chlorine analyser is installed and alarmed to SCADA Eidsvold 2013-03: Chlorine levels in reticulation system are tested weekly. Eidsvold 2013-04: Additional chlorine injection system installed on the Airport Rd reservoir Monitor chlorine dosage as needed Continue to monitor operation 						
11	Treatment	Biological Contamination • Protozoa	 Cross contamination Vermin and bird access Staff error Plant Design 	 Security and vermin-proofing Filtration (limited efficacy) Trained and qualified operators – good housekeeping 	No	Inability to detect contamination in the treatment process	Medium (6)	Yes	Operational review of UV	Water and Wastewater
12	Treatment	Chemical contamination	 Chemical overdose due to equipment failure Loss of Chemical supplies Communication Breakdown (alarms) Staff error Plant Design 	 Treatment processes, flocculation, clarifier, oxidisation with Cl for iron and manganese Chemical injection levels are tested once per day. Dosing equipment is checked once per day. Trained and qualified operators – good housekeeping 	Likelihood	Effective and reliable and monitored by SCADA and alarmed	Low (3)	Yes		
13	Treatment	Disinfection by-products	 High raw water turbidity (dependent on nature of turbidity) Plant Design 	 Degeneration of sodium hypochlorite unlikely due to the relatively small storage capacity which requires monthly refill Staff aware of potential issues and refill fortnightly if possible 	No	No THM exceedances recorded in treated water	Medium (5)	Yes		
14	Treatment	Physical/chemical contamination • Turbidity • Manganese • Particulates	 Failure of back-wash of sand filters Failure of dosing equipment or clarifier. High levels of Manganese or turbidity. Communication Breakdown Staff error 	 Treatment processes, flocculation, clarifier, oxidisation with Cl and K for iron and manganese Operation of filters and clarifier monitored daily. Trained and qualified operators – good housekeeping 	Likelihood/Conse quence	Effective	Low (4)	Yes		
15	Treatment	Substandard chemicals	 Inappropriate chemical storage or defective batch 	 Chemicals stored as per regulation Daily monitoring of manganese, turbidity and chlorine 	Likelihood and consequence	Moderately effective based on treatment results	Low (1)	Yes		

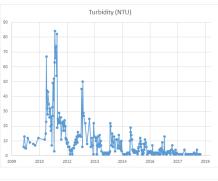
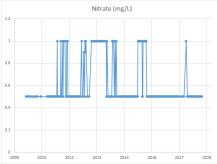
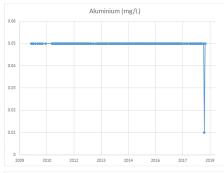
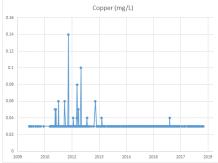
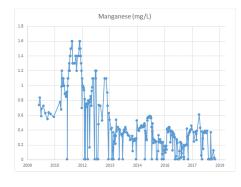

5.6 Eidsvold Risk Management Improvement Program

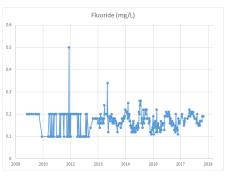
Table 5-8 Eidsvold Risk Improvement Program

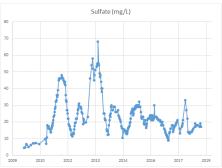

	Scheme Component				Risk Im	provement Actions	Target dates	Estimated cost	Responsibility
Risk No.	/ Sub-component	Hazard/ Hazardous event	Priority	interim	short-term	long-term			
5	Source water	Chemical contamination • General metals: Aluminium, Iron, Manganese, Boron, Copper	Medium			Pre-dosing potassium permanganate in raw water	30/09/2022	\$15000	Water and Wastewater
10	Treatment	Biological contamination Bacteria Viruses	High		Operational review of UV	Upgrade of UV	30/06/2022	\$10000 \$40000	Water and Wastewater
11	Treatment	Biological Contamination Protozoa	High		Operational review of UV	Upgrade of UV	30/06/2022	\$10000 \$40000	Water and Wastewater

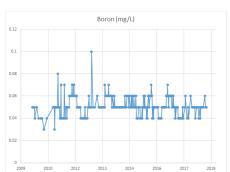

5.7 Eidsvold Water Supply Scheme Water Quality Data

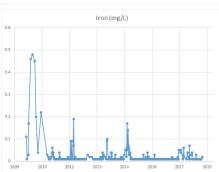

The results are spread across the twelve-month period of the year indicated. Note the orange lines indicate the ADWG limits.

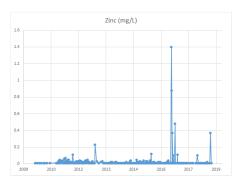












Eidsvold reservoir treated water 2010-2018

Drinking Water Quality Management Plan

6. GAYNDAH WATER SUPPLY SCHEME

6.1 Details of Infrastructure for Providing the Service

Source Water

The Gayndah Water Supply Scheme is supplied from the Burnett River. SunWater are the independent supplier of bulk water in the Upper Burnett Water Supply Scheme and NBRC receive a priority water allocation. The intake infrastructure is owned and operated by NBRC.

Intake Works :

Circa 2015, new raw water supply intake and pump station was constructed immediately upstream of the Claude Warton Weir, on the southern bank. This location provides improved reliability of supply through:

- Improved flood resilience of the intake infrastructure.
- Efficient use of the existing weir storage.
- Improved drought resistance during periods of low runoff within the Burnett River.
- Improved efficiency of water usage during times of low flow in the Burnett River, as the placement of the intake upstream of the weir, removes the previous requirement for large water releases to accommodate the need to provide river flow within the alluvial river channel in the vicinity of alluvial bore intakes.

SunWater own and operate the Claude Wharton Weir and own the segments of land immediately adjacent to the riverbanks. This land ownerships permits SunWater to facilitate operational access and requirements and prevents unauthorised access to the weir impoundment. The NBRC raw water intake, pump station and associated works are therefore located on SunWater property. An agreement has been entered into between SunWater and NBRC, to provide NBRC with full access rights to their infrastructure

The new raw water supply system to the existing treatment works comprises of:

- "Box in bank" intake structure with submerged inlet screens, near the upstream wall of the weir.
- Intake pumps, pipework and associated structural intake elements.
- 2.79km 250ND rising main to the existing WTP.

The construction of the intake also allows for the connection of emergency extension piping to the pump inlets, to allow for the extension of the system abstraction point to the lowest level behind the weir. This is to cater for extreme drought conditions when the depth of impoundment behind the weir is at critically low levels.

This combination intake is considered most appropriate for the site upstream of the weir due to the potentially large range of operating water levels in the weir pool.

The intake is screened to protect the pumping equipment from gross debris. Experience has shown that heavy horizontal bars are preferable to vertically mounted screens as they are less prone to blockage. There is visual evidence of sand accumulation upstream of the weir and accordingly, provision has been made for sand trapping and removal prior to the pump intakes.

The intake pump station configuration provides the following operational performance outcomes:

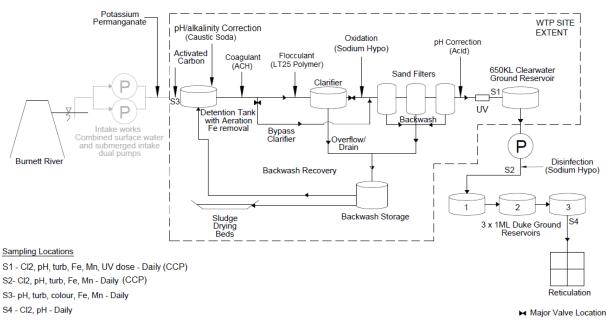
- Exhibits the least problems associated with long term performance.
- Offers coarse screening ability via trash racks.

- Provides protection to pumping equipment.
- Operates soundly in high sediment/sand environments.

The design flow rate, delivered to the WTP, is between 34 and 50 L/s. VSD pumps have been installed, to enable the operational flow rate to be varied to suit the varying treatment capacity of the WTP. The treatment capacity of the WTP varies, because of the widely varying raw water quality.

Treatment Process

The raw water is pumped to the treatment plant located in Simon Street, Gayndah. The treatment plant can process a continuous maximum supply of 46L/s, subject to raw water quality parameters falling within acceptable range. Gayndah's current average usage is 1032kL per day.


The inflow of water to the treatment plant initiates the treatment process. The raw water pump is automatically switched off when the top water level in the clear-water storage reservoir reaches Full Supply Level (FSL) and flow through the treatment plant ceases.

Potassium permanganate (for iron and manganese removal) and activated carbon is dosed prior to the detention tank with aeration for iron removal. pH correction is also performed using caustic soda into the detention tank. ACH and LT 25 Polymer are dosed prior to the clarifier. Following that, further oxidation occurs through liquid sodium hypochlorite injection. The water then undergoes sand filtration and pH correction. In June 2018, a Wedeko UV unit was installed downstream of the sand filters as per the Gayndah Risk Improvement Program. The water is then transferred to the clearwater ground reservoir and is disinfected using sodium hypochlorite before it reaches the three ground reservoirs and the network.

The Gayndah WTP operates automatically; however, since the flood damage in 2011, the WTP has been operated manually with daily attendance from operators. The WTP pumps and reservoir levels are linked to the SCADA (i.e. failure of chlorine dosing or reservoir levels), if an alarm is triggered an SMS is sent to the operator's phone, who will then visit the site.

Chlorine injection, pH and Turbidity are all linked to the SCADA system. There are 1,200 L and 2,500 L chlorine storage tanks at the WTP, the levels of which are reviewed daily by operators. There is a documented operating manual for the WTP.

Figure 6-1 Gayndah WTP Schematic

Distribution

The chlorinated water is pumped from the clearwater ground reservoir to the town reservoirs (three x 1 ML) on Duke Mountain. One flows into the other two balance tanks in series, each has an outlet, so water does not remain in any one reservoir for long periods. All water levels are at the same level at the same time. Water is then gravity fed to the reticulation system. Recent upgrades and augmentations to the reticulation network have been made to ensure that the supply pressure to the community is between 25m and 40m. The system meets normal day demands in accordance with this pressure supply regime.

All services are metered, and demand is controlled through a two-part tariff, which includes an access charge and water usage. Stepped water restrictions are adopted during drought conditions.

Sampling locations are sited at key points determined to provide the best indication of chlorine residual levels in the system. Samples are also taken as water leaves the reservoir. Chlorine residuals in the network are sampled and tested on-site weekly. Raw water and treated water samples are sent regularly to the Queensland Health Laboratory for chemical analysis. Raw water and treated water samples are sent regularly to the Qld Health Laboratory for biological testing.

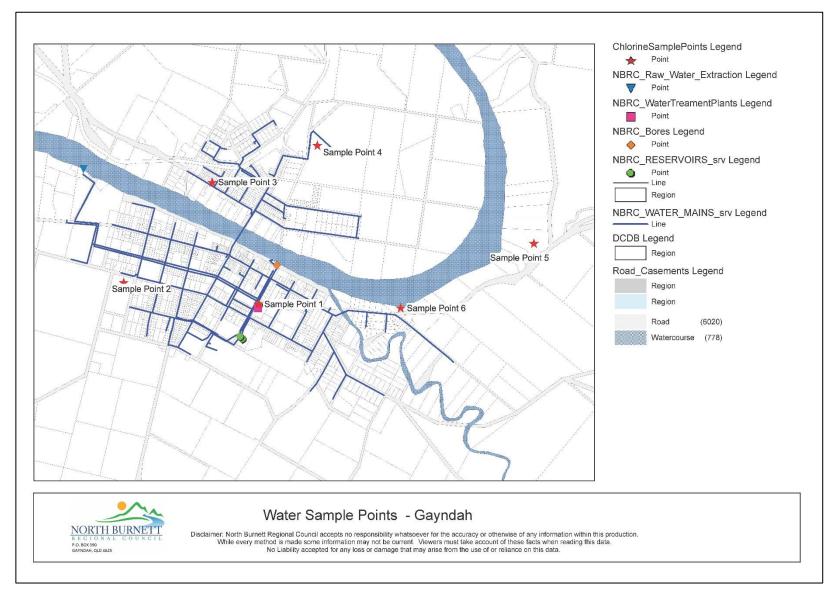


Figure 6-2 Gayndah Water Supply Map

Table 6-1 Infrastructure Details - Gayndah Water Supply Scheme

	Component	Scheme				
	Name	Burnett River				
	Туре	Surface water				
Sources	% of supply	100%				
	Reliability	Reliable flow though prone to flood damage				
	Water quality issues	Turbidity and Colour				
	Type (pumped/gravity/equipped bore/etc)	Pumped surface water intake Capable of delivering 15 to 50 L/s				
Sourcing Infrastructure	Description	Burnett River				
Are there any sources that do not undergo treatment prior to supply?	No					
	Name	Gayndah WTP				
	Process	Aeration, coagulation, flocculation, clarification, filtration, pH adjustment (caustic soda and hydrochloric acid), activated carbon treatment, UV, disinfection (sodium hypochlorite), U.V				
	Design Capacity (20 hr operation)	4.0 ML/d				
	Daily flow range	As required by township typically 0.5 – 2.0 ML/d				
Gayndah WTP	Chemicals added	Potassium permanganate, ACH, polymer, sodium hypochlorite, hydrochloric acid, caustic soda				
	Standby chemical dosing facilities (Y/N)	Ν				
	Water sourced from and %	Burnett River alluvial gravels 100%				
	% of average day demand provided	100%				
	% of scheme supply Distribution area supplied	100%				

	Component	Scheme					
	Bypasses / Variations	No					
	Location	After clearwater ground reservoir					
	Туре	Liquid sodium hypochlorite via diaphragm dosing pump					
	Dose rate	Based on in-line analyser					
	Target residual levels	0.5 mg/L					
	Duty/standby	Yes					
	Dosing arrangements	Fixed					
	Alarms	Νο					
Disinfection	Auto shut-off arrangements	No					
Disinfection	Location	Before the Clearwater Ground Reservoir					
	Туре	Wedeco Spektron 90e U.V					
	Dose rate	40 mJ/cm ² for a flow up to 25 L/s at a UVT of over 86%					
	Target residual levels	NA					
	Duty/standby	Νο					
	Dosing arrangements	Fixed					
	Alarms	Yes					
	Auto shut-off arrangements	Yes					
	Pipe material	Asbestos Cement and Ductile Iron Cement Lined					
	Age range	35-45 years					
Distribution and	Approx % of total length	90%					
Reticulation System	Pipe material	HDPE and Blue Brute PVC					
	Age range	5-8 years					
	Approx % of total length	10 %					

	Component	Scheme					
	Areas where potential long detention periods could be expected	Latham Terrace					
	Areas where low water pressure (e.g. < 12 m) could be expected during peak or other demand periods)	None					
	Ground (No)	1					
	Name	Duke Ground Reservoirs					
	Capacity (ML)	3 x 1ML					
Reservoirs	Roofed (Y/N)	Y					
	Vermin-proof (Y/N)	Y					
	Runoff directed off roof (Y/N)	Ŷ					

6.2 Gayndah Water Quality: Identifying Hazards and Hazardous Events

Water quality information has been collected by NBRC for raw water, treated water and reticulated supply for the period of January 2010 to November 2018. Analysis of this data has been completed to assess the results in comparison to the ADWG guideline values for parameters measured. It is noted that no SunWater water quality data was reviewed for raw water.

A summary of the water analysis undertaken for the Gayndah Water Supply Scheme is contained in Table 6-2, Table 6-3, Table 6-4 and Table 6-5. Section 6.7 includes graphs of sampling data.

For raw water and treated water the following parameters have been measured monthly:

- Conductivity
- pH
- Total & temporary hardness
- Alkalinity (including residual)
- Silica
- Total dissolved ions
- Total dissolved solids
- True colour
- Turbidity
- Saturation index
- Mole ratio
- Sodium absorption ratio

- Figure of merit ratio
- Cations (sodium, potassium, calcium, magnesium, and hydrogen)
- Anions (bicarbonate, carbonate, hydroxide, chloride, fluoride, nitrate, sulphate)
- Dissolved metals (iron, manganese, zinc, boron, copper, aluminium)
- Total metals (aluminium, arsenic, cadmium, chromium, copper, iron, lead, manganese, nickel, zinc)
- THM

The reticulated water scheme has been measured for pH, residual chlorine, *E. coli* and total coliforms.

Interpretation

Over the period of testing there has been a medium rate of sampling for Gayndah with approximately 3 tests per month for raw water and 3.5 tests per month for treated water.

For samples taken from the Gayndah WTP, there is one occurrence of turbidity, nitrate and iron exceeding the guideline value.

Within the reticulation system there were several occurrences when residual chlorine fell below the ADWG recommended value. There were 5 instances of total coliforms being detected within the system. There were potential water quality issues within the reticulation system due to low levels of residual chlorine and total coliforms being detected. Increased frequency of sampling and testing, and operational response, has since reduced this risk.

Table 6-2 Gayndah Raw Water Source

				Gayndah Source – Bı	urnett River		
Parameter					Summary of Resu		
(mg/L unless otherwise specified)	otherwise location Time Peri	Time Period	No of samples	Maximum Value	Average Value	Minimum Value	Comments
Turbidity (NTU)	Bore	Jan 10 – Nov 2018	356	777	22	<1	Bore number to be recorded to distinguish between bores
Fluoride	Bore	Jan 10 – Nov 2018	356	0.50	0.18	0.07	Multiple limits of detection were used (<0.1, <0.2 and <0.25). In order to calculate the stats, the absolute values were used.
Nitrate	Bore	Jan 10 – Nov 2018	356	5.4	1.07	<0.5	Multiple limits of detection were used (<0.5, <1, <2.5 and <5). In order to calculate the stats, the absolute values were used.
Sulfate	Bore	Jan 10 – Nov 2018	356	74.0	26.7	2	
Dissolved metals	1	1	1	1			
Aluminium	Bore	Jan 10 – Nov 2018	356	1.80	0.06	<0.05	Multiple limits of detection were used (<0.05 and <0.1). In order to calculate the stats, the absolute values were used.
Boron	Bore	Jan 10 – Nov 2018	356	0.12	0.07	0.02	
Copper	Bore	Jan 10 – Nov 2018	356	0.13	0.03	<0.03	
Iron	Bore	Jan 10 – Nov 2018	356	1.20	0.05	<0.01	Multiple limits of detection were used (<0.01 and <0.02). In order to calculate the stats, the absolute values were used.
Manganese	Bore	Jan 10 – Nov 2018	356	0.95	0.07	<0.01	Multiple limits of detection were used (<0.01 and <0.06). In order to calculate the stats, the absolute values were used.

Drinking Water Quality Management Plan

				Gayndah Source – Bı	urnett River		
Parameter					Summary of Resu		
(mg/L unless otherwise specified)	Sampling location	Time Period	No of samples	Maximum Value	Average Value	Minimum Value	Comments
Zinc	Bore	Jan 10 – Nov 2018	356	0.83	0.02	<0.01	Multiple limits of detection were used (<0.01 and <0.02). In order to calculate the stats, the absolute values were used.
Total metals							
Aluminium	Water plant Simon St	Nov 2017 – Oct 2018	4	0.34	0.25	0.17	
Arsenic	Water plant Simon St	Nov 2017 – Oct 2018	4	0.002	0.0013	0.0018	
Cadmium	Water plant Simon St	Nov 2017 – Oct 2018	4	<0.0001	<0.0001	<0.0001	All samples taken were <0.0001 mg/L
Chromium	Water plant Simon St	Nov 2017 – Oct 2018	4	0.0007	0.0005	0.0004	
Copper	Water plant Simon St	Nov 2017 – Oct 2018	4	0.002	0.002	0.002	All raw samples taken were 0.002 mg/L
Iron	Water plant Simon St	Nov 2017 – Oct 2018	4	0.56	0.47	0.32	
Lead	Water plant Simon St	Nov 2017 – Oct 2018	4	0.0003	0.00022	0.0002	
Manganese	Water plant Simon St	Nov 2017 – Oct 2018	4	0.11	0.09	0.06	
Nickel	Water plant Simon St	Nov 2017 – Oct 2018	4	0.0018	0.0016	0.0013	

	Gayndah Source – Burnett River											
Parameter					Summary of Resu							
(mg/L unless otherwise specified)	Sampling location	Time Period	No of samples	Maximum Value	Maximum Value Average Value Minimum Value		Comments					
Zinc	Water plant Simon St	Nov 2017 – Oct 2018	4	0.003	0.002	0.001						

Table 6-3 Gayndah Treated Water

Plant		Gayndah WTP											
Parameter (mg/L unless	Sampling	Time Period	No of samples	s	ummary of result	ts	Australian Drinking Water Guidelines guideline value for	No of samples exceeding Australian Drinking Water Guidelines guideline value	Comment				
otherwise specified)	location(s)		taken in time period	Maximum Value	Average Value	Minimum Value	health unless otherwise specified						
Turbidity (NTU)	WTP	Jan 10 – Nov 18	371	8.0	1.07	<1.0	5	1	Aesthetic guideline only Exceedance in Dec 2016				
Fluoride	WTP	Jan 10 – Nov 18	371	1.0	0.25	0.05	1.5	0	Multiple limits of detection were used (<0.05, <0.25 and <1). In order to calculate the stats, the absolute values were used.				

Plant					Gayndah	WTP			
Parameter (mg/L unless	Sampling	pling Time Period	No of samples	S	ummary of result	ts	Australian Drinking Water Guidelines guideline value for health unless otherwise specified	No of samples exceeding Australian	Comment
otherwise specified)	location(s)		taken in time period	Maximum Value	Average Value	Minimum Value		Drinking Water Guidelines guideline value	
Nitrate	WTP	Jan 10 – Nov 18	371	100	1.5	<0.50	50	2	Aesthetic guideline only
									Multiple limits of detection were used (<0.5 to <5). In order to calculate the stats, the absolute values were used.
									Exceedances occurred in Nov and Dec 2016
Sulfate	WTP	Jan 10 – Nov 18	371	75.0	27.3	2.5	250	0	Aesthetic guideline only
Dissolved metals									
Aluminium	WTP	Jan 10 – Nov 18	371	0.1	0.05	<0.05	0.1	0	Although 0.2mg/L is the aesthetic guideline value, <0.1 mg/L is desirable
									Multiple limits of detection were used (<0.05 and <0.1). In order to calculate the stats, the absolute values were used.

Plant					Gayndah	WTP			
Parameter (mg/L unless	Sampling	Time Period	No of samples	s	ummary of result	ts	Australian Drinking Water Guidelines guideline value for health unless otherwise specified	No of samples exceeding Australian	Comment
otherwise specified)	location(s)		taken in time period	Maximum Value	Average Value	Minimum Value		Drinking Water Guidelines guideline value	
Boron	WTP	Jan 10 – Nov 18	371	0.4	0.07	0.02	1	0	Although 4mg/L is the health guideline value, concentrations in uncontaminated sources is usually <1 mg/L
Copper	WTP	Jan 10 – Nov 18	371	0.14	0.03	<0.03	2 (1)	0	Number in brackets denotes the aesthetic guideline value Multiple limits of detection were used (<0.03 and <0.06). In order to calculate the stats, the absolute values were used.
Iron	WTP	Jan 10 – Nov 18	371	0.43	0.01	<0.01	0.3	1	Aesthetic guideline only Multiple limits of detection were used (<0.01 and <0.02). In order to calculate the stats, the absolute values were used. Exceedance in April 2010

Plant					Gayndah	WTP			
Parameter (mg/L unless	Sampling	Time Period	No of samples	S	ummary of resul	ts	Australian Drinking Water Guidelines guideline value for	No of samples exceeding Australian Drinking Water Guidelines guideline value	Comment
otherwise specified)	location(s)		taken in time period	Maximum Value	Average Value	Minimum Value	health unless otherwise specified		
Manganese	WTP	Jan 10 – Nov 18	371	0.06	0.01	<0.01	0.5 (0.1)	0	Number in brackets denotes the aesthetic guideline value Multiple limits of detection were used (<0.01 and <0.06). In order to calculate the stats, the absolute
Zinc	WTP	Jan 10 – Nov 18	371	0.88	0.02	<0.01	3	0	values were used. Multiple limits of detection were used (<0.01 and <0.02). In order to calculate the stats, the absolute values were used.
Total metals	•								
Aluminium	Water plant Simon St	Nov 2017 – Oct 2018	4	0.019	0.016	0.014	0.2	0	Aesthetic guideline only
Arsenic	Water plant Simon St	Nov 2017 – Oct 2018	4	0.004	0.0014	0.0004	0.01	0	
Cadmium	Water plant Simon St	Nov 2017 – Oct 2018	4	<0.0001	<0.0001	<0.0001	0.002	0	All samples were <0.0001 mg/L
Chromium	Water plant Simon St	Nov 2017 – Oct 2018	4	<0.0001	<0.0001	<0.0001	0.05	0	All samples were <0.0001 mg/L

Plant					Gayndah	WTP			
Parameter (mg/L unless	Sampling	Time Period	No of samples	s	ummary of result	ts	Australian Drinking Water Guidelines guideline value for	No of samples exceeding Australian Drinking Water Guidelines guideline value	Comment
otherwise specified)	location(s)		taken in time period	Maximum Value	Average Value	Minimum Value	health unless ¹ otherwise specified		
Copper	Water plant Simon St	Nov 2017 – Oct 2018	4	0.013	0.008	0.006	2 (1)	0	Number in brackets denotes the aesthetic guideline value
Iron	Water plant Simon St	Nov 2017 – Oct 2018	4	0.032	0.013	0.006	0.3	0	Aesthetic guideline only
Lead	Water plant Simon St	Nov 2017 – Oct 2018	4	0.0005	0.0002	<0.0001	0.01	0	
Manganese	Water plant Simon St	Nov 2017 – Oct 2018	4	0.0016	0.0011	0.0006	0.5 (0.1)	0	Number in brackets denotes the aesthetic guideline value
Nickel	Water plant Simon St	Nov 2017 – Oct 2018	4	0.0007	0.00067	0.0006	0.02	0	
Zinc	Water plant Simon St	Nov 2017 – Oct 2018	4	0.009	0.0047	0.003	3	0	Aesthetic guideline only

Table 6-4 Gayndah Reticulated Water

Scheme Sampling Location			1					
Parameter (mg/L unless	Time Period	No of samples	Summary of Results			Australian Drinking Water Guidelines guideline value for	No of samples exceeding Australian Drinking	Comment
otherwise specified)			Maximum Value	Average Value	Minimum Value	health unless otherwise specified	Water Guidelines guideline value	
pH (pH units)	Jan 10 – Nov 18	371	8.1	7.6	6.7	6.5 - 8.5	0	Aesthetic guideline only
Disinfectant residual	July 2016 – Nov 2018	264	2.8	0.82	0.03	>0.2 - 0.5	31	Guideline value is from the World Health Organization's Guidelines for Drinking-water Quality 4 th edition Chlorine residual below 0.2 in: • Nov 2016 • Jan, Feb, May, Jun, July, Oct 2017 • Jan, Feb, Mar, Apr, Sept 2018
Total coliform (mpn/100mL)	July 2016 – Nov 2018	264	8	0.07	0	NA	NA	
<i>E. coli</i> (CFU/100mL)	July 2016 – Nov 2018	264	0	0	0	None Detected	0	
Trihalomethanes	Sept 2016 – Oct 2018	4	0.23	0.121	0.076	0.25	0	

Table 6-5 Gayndah Water Quality Complaints
--

Year	No of Water Quality Complaints	Water Quality Complaints per 1000 Connections	Main Reasons for Complaints	Likely Sources / Causes of Problems	Resolution of Problem
1-7-2010					
to	0	0			
26-10-2018					

6.3 Gayndah Catchment Characteristics

Gayndah with a population 1981, is NBRC's largest town and, along with Mundubbera, is the centre of one of the largest Citrus growing areas in Qld.

The catchment for Gayndah's potable water source includes all the Burnett River and its tributaries to the north of the town. The topography of this large area includes hilly and undulating natural forest areas, river, and creek flats.

Land use within this area is varied and includes extensive irrigated citrus orchids, cropping and cattle grazing. The citrus growing area extends primarily from the north of the town through to Mundubbera and continues along the Burnett to Eidsvold. Gayndah is thus downstream of most of the economic activity within the NBRC region. This has important implications for water quality.

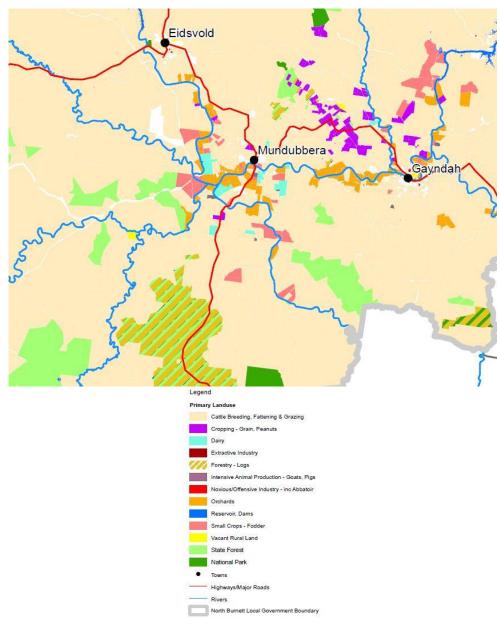


Figure 6-3 Gayndah Catchment Area

6.4 Gayndah Hazard Identification, Risk Assessment and Uncertainty

Table 6-6 Gayndah Hazard Identification, Risk Assessment and Uncertainty

				Ma	aximum Risk				Residual risk				Possible and Proposed Further Risk Reduction
No.	Scheme Component	Hazard	Hazard Source	Consequence	Likelihood	Risk level	Existing Preventive Measures / Barriers.	Consequence	Likelihood	Risk level	Level of Uncertainty	Comments	(Risk Management Improvement Plan Actions)
1	Source water	Biological contamination • Protozoa	 Livestock Wildlife Issues with Bore Infiltration Septic systems/sewage Recreation 	Catastrophic	Unlikely	High (10)	 Clarification, filtration, and disinfection, oxidation, and UV Dilution during treatment processes and storage Raw and treated water monitoring program was reviewed to ensure its efficacy in providing sufficient data to provide confidence in the risk categorisations. 	Catastrophic	Rare	Medium (6)	Uncertain	Large fruit bat colonies sometimes roost over the river in the vicinity of extraction points. This has resulted in some very high total coliform counts in the raw water, but treatment systems are robust	Validate filter for protozoa using surrogate microbe challenge testing
2	Source water	Biological contamination • Bacteria • Viruses	 Livestock Wildlife Issues with Bore Infiltration Septic Systems/sewage Recreation 	Catastrophic	Unlikely	High (10)	 WTP processes including filtration and disinfection, oxidation, and UV. Environmental Management Plans for vegetation control to deter flying foxes roosting. Catchment group education programs Raw and treated water monitoring program was reviewed to ensure its efficacy in providing sufficient data to provide confidence in the risk categorisations. 	Catastrophic	Rare	Medium (6)	Uncertain. Biological contamination always in the raw water but treatment seen and shown as effective	Large fruit bat colonies roost over the river in the vicinity of extraction points. This has resulted in some very high total coliform counts in the raw water, but treatment systems are robust	Consider removal of colony of trees to remove bat roosts and discourage the bat colonies.
3	Source water	Chemical contamination Heavy metals 	 Natural heavy metals and other chemicals in water 	Major	Unlikely	Medium (8)	 Treatment processes, flocculation, clarifier, filtration, Annual monitoring and testing of source water. 	Major	Rare	Medium (5)	Confident	Existing measures are robust	
4	Source water	Chemical contamination Nutrients: Nitrate Anions: Sulphate, Fluoride 	 Pesticides and Fertilisers Natural occurrences of anions 	Minor	Possible	Medium (6)	1. Treatment processes, flocculation, clarifier, filtration	Minor	Unlikely	Low (4)	Confident	Existing measures are robust	
5	Source water	Chemical contamination General metals: Aluminium, Iron, Manganese, Boron, Copper 	 Pesticides and Fertilisers Natural chemicals in water 	Moderate	Unlikely	Medium (6)	 Treatment processes, flocculation, clarifier, oxidisation, filtration 	Moderate	Rare	Low (3)	Confident	Existing measures are robust	
6	Source water	Chemical contamination	1. Accidental spills	Moderate	Rare	Low (3)	 Detection and dilution during treatment processes and storage Emergency response Public notification process (do not drink alert) 	Insignificant	Rare	Low (1)	Uncertain	Small concentration. Only risk of any real consequence would be a chemical spill near the intake Inability to predict type or consistency of possible spill?	
7	Source water	Physical contamination • Ash • Mud	 Soil erosion Flood waters (high turbidity and colour) Bush fires 	Minor	Possible	Medium (6)	 Catchment group education programs Treatment processes – clarifier, flocculants, sand filters Public notification process (boil water alert) 	Minor	Unlikely	Low (4)	Confident	Occasional flooding of Burnett River cannot be avoided.	
8	Source water	Lack of supply	 Inadequate maintenance Lack or failure of standby pumps power failure 	Moderate	Unlikely	Medium (6)	 Estimated 4 day's supply in reserve at clearwater and hill-top reservoirs. Gayndah 2018-01 A dual submerged pumps (duty/stand-by/alternating) 	Moderate	Rare	Low (3)	Reliable	Existing measures are robust	

				Ma	aximum Risk				Residual risk				Possible and Proposed Further Risk Reduction
No.	Scheme Component	Hazard	Hazard Source	Consequence	Likelihood	Risk level	Existing Preventive Measures / Barriers.	Consequence	Likelihood	Risk level	Level of Uncertainty	Comments	(Risk Management Improvement Plan Actions)
			4. Blockage of intake structure										
9	Source water	Lack of supply	Climatic variations	Moderate	Unlikely	Medium (6)	 Importing water (trucked) Drought management Plan actions: restrictions, communication etc. 	Moderate	Rare	Low (2)	Uncertain		
10	Treatment	Biological contamination • Bacteria • Viruses	 Failure of chlorine injection Insufficient chlorine residual Loss of Chemical supplies Staff error Plant Design 	Major	Possible	High (12)	 Treatment processes – Clarification, flocculation, filtration, UV, Chlorine disinfection at filter stage and leaving clearwater reservoir. Chlorine levels are tested at least 3 times per day. Injection pumps and chlorine supply are also checked and inspected at the same time. Public notification process (boil water alert) Trained and qualified operators – good housekeeping Security and vermin-proofing Regular cleaning and maintenance of process equipment Gayndah 2013-03: Operation of the chlorine injection system needs to be linked to raw water meter signal. Council is reassessing whether this is still required as now have online analysers and alarm if water quality is off spec. Gayndah 2013-04: On line chlorine analyser are installed and alarmed to SCADA 	Major	Rare	Medium (5)	Reliable		UV Operational review
11	Treatment	Biological contamination • Protozoa	 Cross contamination Vermin and bird access Staff error Plant Design 	Catastrophic	Rare	Medium (6)	 Security and vermin-proofing Coagulation, clarification, filtration and UV Trained and qualified operators – good housekeeping Raw and treated water monitoring program was reviewed to ensure its efficacy in providing sufficient data to provide confidence in the risk categorisations. Gayndah 2018-02: UV unit has been installed at the WTP 	Major	Rare	Medium (5)	Uncertain	Inability to detect contamination in the treatment process	UV Operational review
12	Treatment	Chemical contamination	 Chemical overdose due to equipment failure Loss of Chemical supplies Communication Breakdown (alarms) Staff Error Plant Design 	Moderate	Unlikely	Medium (6)	 Treatment processes, flocculation, clarifier, oxidisation with Cl and KMn04 for iron and manganese Chlorine levels are tested at least 3 times per day. Injection pumps and chlorine supply are also checked and inspected at the same time. Trained and qualified operators – good housekeeping Gayndah 2013-03: Operation of the chlorine injection system needs to be linked to raw water meter signal. Council is reassessing 	Moderate	Rare	Low (3)	Uncertain	Online chlorine analyser will detect chlorine exceedance and alarm and shut the plant down.	

Page **93** of **323**

				Ma	aximum Risk				Residual risk			
No.	Scheme Component	Hazard	Hazard Source	Consequence	Likelihood	Risk level	Existing Preventive Measures / Barriers.	Consequence	Likelihood	Risk level	Level of Uncertainty	
							whether this is still required as now have online analysers and alarm if water quality is off spec.					
							Gayndah 2013-04: Online chlorine analyser are installed and alarmed to SCADA					
							 Degeneration of sodium hypochlorite unlikely due to the relatively small storage capacity which requires monthly refill 					
13	Treatment	Disinfection by-products (THMs)	 High raw water turbidity (dependent on nature of turbidity) 	Major	Rare	Medium (5)	Staff aware of potential issues and refill fortnightly if possible	Major	Rare	Medium (5)	Confident	
			2 Plant Design				THM monitoring have commenced. All results are below ADWG limits.					
							Gayndah 2018-03: THM monitoring occurs monthly					
		Physical/chemical	 Failure of back-wash of sand filters Failure of dosing 				 Treatment processes, flocculation, clarifier, oxidisation with Cl and KMnO₄ for iron and manganese 					
		contamination	equipment or clarifier. 3. High levels of			Medium	2. Operation of filters and clarifier monitored daily.					
14	Treatment	TurbidityManganese	Manganese or turbidity.	Minor	Likely	(8)	 Trained and qualified operators – good housekeeping 	Minor	Unlikely	Low (4)	Confident	
		Particulates	 Communication Breakdown Staff error 				Gayndah 2013-04: On line chlorine analyser are installed and alarmed to SCADA					
15	Treatment	Clearwater reservoir pump failure	 Inadequate maintenance/lack of standby pumps Communication Breakdown 	Moderate	Unlikely	Medium (6)	 Estimated 4 day's supply at the hilltop reservoirs. Standby pump installed 	Moderate	Rare	Low (3)	Confident	
							1. Chemicals stored as per regulation					
16	Treatment	Substandard chemicals	1. Inappropriate chemical storage or defective	Moderate	Rare	Low (3)	2. Monitoring of manganese, turbidity and chlorine occurs every 3 hours	Insignificant	Rare	Low (1)	Confident	
			batch				Gayndah 2013-04: Online chlorine analyser are installed and alarmed to SCADA					
17	All	 Sabotage or natural disaster causing contamination or supply failure 	 Damaged equipment Harmful substances 	Major	Rare	Medium (5)	1. Treatment plant fenced and locked	Moderate	Rare	Low (3)	Confident	
18	All	 Power failure causing contamination or supply failure 	1. Power failure	Minor	Unlikely	Low (4)	 Estimated one week's supply in reserve at clearwater and tower reservoir. 	Minor	Rare	Low (3)	Confident	
19	Raw Water	Pesticides: • Imidacloprid • Tebiurithon	Farming chemicals	Major	Rare	Medium (5)	1. Regular monitoring program	Moderate	Rare	Low (3)	Confident	

Page **94** of **323**

Comments	Possible and Proposed Further Risk Reduction Actions (Risk Management Improvement Plan Actions)
Existing measures are robust	
Existing measures are robust	
Existing measures are robust	
All practical steps have been taken	
Existing measures and capacity are robust. Some incidents have occurred with no consequence.	
All practical steps have been taken	

6.5 Gayndah Risk Management Measures

Table 6-7 Existing and Proposed Preventative Measures

No.	Scheme Component	Hazard	Hazard Source	What are the existing preventative measures?	Do existing preventative measures impact on likelihood &/or consequence?	How effective is/are the existing preventative measure/s & on what basis has this been determined?	Residual risk after preventative measures	ls the level of residual risk acceptable	Proposed measures to reach an acceptable level or residual risk	Responsible Work Unit/ Organisation (& arrangements with external organisation if applicable)
1	Source water	Biological contamination • Protozoa	 Livestock Wildlife Issues with Bore Infiltration Septic systems/sewage Recreation 	 Filtration (limited efficacy) Dilution during treatment processes and storage 	Likelihood & Consequence	Unknown	Medium (6)	Yes	Validate filter for protozoa using surrogate microbe challenge testing	Water and Wastewater
2	Source water	Biological contamination • Bacteria • Viruses	 Livestock Wildlife Issues with Bore Infiltration Septic Systems/sewage Recreation 	 WTP processes including filtration and disinfection. Environmental Management Plans for vegetation control to deter flying foxes roosting. Catchment group education programs 	Likelihood & Consequence	Unknown	Medium (6)	Yes	Consider removal of colony of trees to remove bat roosts and discourage the bat colonies.	Water and Wastewater
3	Source water	Chemical contamination • Heavy metals	1. Natural heavy metals and other chemicals in water	 Treatment processes, flocculation, clarifier Annual monitoring and testing of source water 	Likelihood	Unknown	Medium (5)	Yes		
4	Source water	Chemical contamination • Nutrients: Nitrate • Anions: Sulphate, Fluoride	 Pesticides and Fertilisers Natural occurrences of anions 	1. Treatment processes, flocculation, clarifier	Likelihood	Unknown	Low (4)	Yes		

Drinking Water Quality Management Plan

No.	Scheme Component	Hazard	Hazard Source	What are the existing preventative measures?	Do existing preventative measures impact on likelihood &/or consequence?	How effective is/are the existing preventative measure/s & on what basis has this been determined?	Residual risk after preventative measures	ls the level of residual risk acceptable	Proposed measures to reach an acceptable level or residual risk	Responsible Work Unit/ Organisation (& arrangements with external organisation if applicable)
5	Source water	Chemical contamination • General metals: Aluminium, Iron, Manganese, Boron, Copper	 Pesticides and Fertilisers Natural chemicals in water 	 Treatment processes, flocculation, clarifier, oxidisation with Cl for iron and manganese 	Likelihood	Unknown	Low (3)	Yes		
6	Source water	Chemical contamination	1. Accidental spills	 Detection and dilution during treatment processes and storage Emergency response Public notification process (do not drink alert) 	Consequence	Unknown as has not occurred	Low (1)	Yes		
7	Source water	Physical contamination • Ash • Mud	 Soil erosion Flood waters (high turbidity and colour) Bush fires 	 Catchment group education programs Treatment processes – clarifier, flocculants, sand filters Public notification process (boil water alert) 	Likelihood & Consequence	Unknown	Low (4)	Yes		
8	Source water	Lack of supply	 Inadequate maintenance Lack or failure of standby pumps Power failure Blockage of intake structure 	 Estimated 4 day's supply in reserve at clearwater and hill- top reservoirs. 	Likelihood	Not effective- neither stand by pumps or alternate source currently available.	Low (3)	Yes		

No.	Scheme Component	Hazard	Hazard Source	What are the existing preventative measures?	Do existing preventative measures impact on likelihood &/or consequence?	How effective is/are the existing preventative measure/s & on what basis has this been determined?	Residual risk after preventative measures	ls the level of residual risk acceptable	Proposed measures to reach an acceptable level or residual risk	Responsible Work Unit/ Organisation (& arrangements with external organisation if applicable)
9	Source water	Lack of supply	Climatic variations	 Importing water Drought management Plan actions: restrictions, communication etc. 	Likelihood	Effective- reliable supply	Low (2)	Yes		
10	Treatment	Biological contamination • Bacteria • Viruses	 Failure of chlorine injection Insufficient chlorine residual Loss of chemical supplies Staff error Plant Design 	 Treatment processes Chlorine disinfection at raw water and at filter stage and leaving clearwater reservoir Chlorine levels are tested at least 3 times per day. Injection pumps and chlorine supply are also checked and inspected at the same time. Public notification process (boil water alert) Trained and qualified operators – good housekeeping Security and vermin- proofing Regular cleaning and maintenance of process equipment 	Likelihood	Effective-online and alarmed	Medium (5)	Yes	UV Operational review	Water and Wastewater

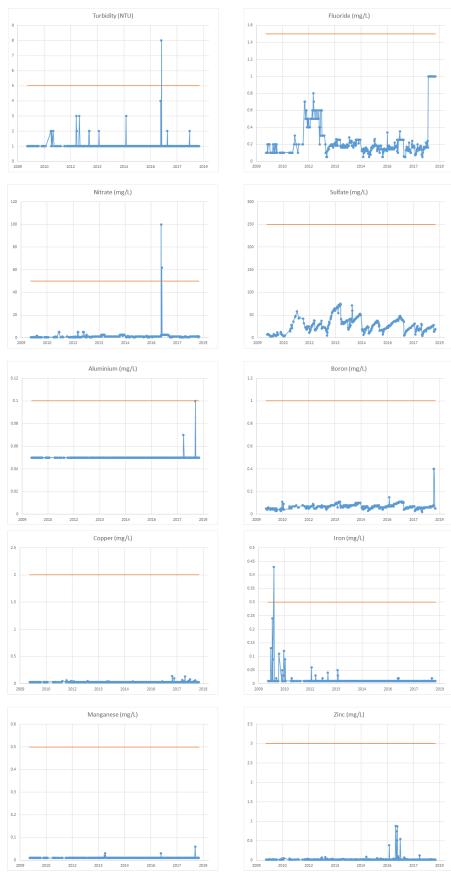
No.	Scheme Component	Hazard	Hazard Source	What are the existing preventative measures?	Do existing preventative measures impact on likelihood &/or consequence?	How effective is/are the existing preventative measure/s & on what basis has this been determined?	Residual risk after preventative measures	ls the level of residual risk acceptable	Proposed measures to reach an acceptable level or residual risk	Responsible Work Unit/ Organisation (& arrangements with external organisation if applicable)
				Gayndah 2013-03: Now have online analysers and alarm if water quality is off spec. Gayndah 2013-04: On line chlorine analyser are installed and alarmed to SCADA						
11	Treatment	Biological contamination • Protozoa	 Cross contamination Vermin and bird access Staff error Plant Design 	 Security and vermin- proofing Filtration (limited efficacy) and UV Trained and qualified operators – good housekeeping 	Yes	Inability to detect contamination in the treatment process	Medium (5)	Yes	UV Operational review	Water and Wastewater
12	Treatment	Chemical contamination	 Chemical overdose due to equipment failure Loss of Chemical supplies Communication Breakdown (alarms) Staff error Plant Design 	 Treatment processes, flocculation, clarifier, oxidisation with Cl and KMn0₄ for iron and manganese Chlorine levels monitored by an On Line Chlorine Analyser Injection pumps and chlorine supply are also checked and inspected at the same time. 	Likelihood	Effective- based on there being no instance of overdose yet.	Low (3)	Yes		

No.	Scheme Component	Hazard	Hazard Source	What are the existing preventative measures?	Do existing preventative measures impact on likelihood &/or consequence?	How effective is/are the existing preventative measure/s & on what basis has this been determined?	Residual risk after preventative measures	ls the level of residual risk acceptable	Proposed measures to reach an acceptable level or residual risk	Responsible Work Unit/ Organisation (& arrangements with external organisation if applicable)
				4 Trained and qualified operators – good housekeeping						
13	Treatment	Disinfection by- products	 High raw water turbidity (dependent on nature of turbidity) Plant Design 	 Degeneration of sodium hypochlorite unlikely due to the relatively small storage capacity which requires monthly refill Staff aware of potential issues and refill fortnightly if possible 	No	No THM exceedances recorded in treated water	Medium (5)	Yes		
14	Treatment	Physical/chemical contamination • Turbidity • Manganese • Particulates	 Failure of back-wash of sand filters Failure of dosing equipment or clarifier. High levels of Manganese or turbidity. Communication breakdown Staff error 	 Treatment processes, flocculation, clarifier, oxidisation with Cl and KMnO₄ for iron and manganese Operation of filters and clarifier monitored daily. Trained and qualified operators – good housekeeping 	Likelihood	Less than effective- based on some tests not meeting parameters.	Low (4)	Yes		
15	Treatment	Clearwater reservoir pump failure	 Inadequate maintenance/lack of standby pumps Communication Breakdown 	 Estimated 4 day's supply at the hilltop reservoirs. Standby pump installed 	Likelihood	Effective- multiple backups	Low (3)	Yes		

No.	Scheme Component	Hazard	Hazard Source	What are the existing preventative measures?	Do existing preventative measures impact on likelihood &/or consequence?	How effective is/are the existing preventative measure/s & on what basis has this been determined?	Residual risk after preventative measures	ls the level of residual risk acceptable	Proposed measures to reach an acceptable level or residual risk	Responsible Work Unit/ Organisation (& arrangements with external organisation if applicable)
16	Treatment	Substandard chemicals	1. Inappropriate chemical storage or defective batch	 Chemicals stored as per regulation Monitoring of manganese, turbidity and chlorine occurs every 3 hours 	Consequence	Moderately effective- based on treatment results	Low (1)	Yes		
17	All	Sabotage or natural disaster causing contamination or supply failure	 Damaged equipment Harmful substances 	1. Treatment plant fenced and locked	Likelihood	Moderate- Experience	Low (3)	Yes		
18	All	Power failure causing contamination or supply failure	1. Power failure	 Estimated one week's supply in reserve at clearwater and tower reservoir. 	Likelihood and Consequence	Effective- history	Low (3)	Yes		
19	Raw Water	Pesticides: • Imidacloprid Tebiurithon	Farming chemicals	1. Regular monitoring program	Consequence	Effective- history	Low (3)	Yes		


6.6 Gayndah Risk Management Improvement Program

Table 6-8 Gayndah Risk Improvement Program


Risk No.	Scheme Component / Sub-component	Hazard/ Hazardous event	Priority	Risk Improvement Actions			Target dates	Estimated cost	Responsibility
				interim	short-term	long-term			
1	Source water	Biological contamination Protozoa	Medium			Validate filter for protozoa using surrogate microbe challenge testing	20/12/2022	\$30,000	Water and Wastewater
2	Source water	Biological contamination • Bacteria • Viruses	Medium		Consider removal of colony of trees to remove bat roosts and discourage the bat colonies.		20/12/2021	\$-	Water and Wastewater
10	Treatment	Biological contamination • Bacteria • Viruses	Medium			UV Operational review	30/6/2022	\$10,000	Water and Wastewater
11	Treatment	Biological contamination Protozoa	Medium			UV Operational review	30/6/2022	\$10,000	Water and Wastewater

6.7 Gayndah Water Supply Scheme Water Quality Data

The results are spread across the twelve-month period of the year indicated. Note the orange lines indicate the ADWG limits.

Drinking Water Quality Management Plan

Gayndah treated water 2010-2018

7. MINGO CROSSING CARAVAN PARK WATER SUPPLY SCHEME

7.1 Details of Infrastructure for Providing the Service

Source Water

Mingo Crossing Caravan Park Water Supply Scheme only supplies potable water to the caravan park. The park consists of a caretaker's residence with one permanent resident.

Source water at Mingo Crossing is the Burnett River, backwater to Paradise Dam next to the campgrounds. The intake infrastructure consists of a submersible pump on floating pontoon secured in place. A 50mm PE pipe supplies the WTP from this pump. This source may no longer be available for the site due to the lowing of dam levels for dam safety reasons.

During flood events, the raw water quality can be highly turbid and coloured, and the treatment plant would not have the capacity to treat this. During these times, water extraction from the Burnett River is suspended and potable water is trucked in. This water is put through the WTP and re-treated prior to supply into the reticulation.

Treatment Process

The raw water is pumped to the treatment plant located in the caravan park. The designed flow rate to the WTP is 32 kL/d. Mingo Crossing's average usage is approximately 8 kL/d.

The inflow of water from the river to the treatment plant is initiated by a low-level switch, and conversely switched off by a high-level switch, in the Raw Water Tank 1 (one of three tanks). The three raw water tanks are balanced by a common low-level connection pipe.

Operation of the raw water pumps will initiate the dosing of flocculant (poly aluminium chloride or PACI). As water enters the clarification process, it first passes a vessel which incorporates several chambers and baffles as well as air agitation. Air is supplied by the mixing/backwash blower. From the flocculant mixing vessel, water flows to the clarifier.

The clarifier is designed with structured packing to facilitate the flocculation, settling and removal of solids. The solids settle to the bottom cone of the clarifier where they are withdrawn and disposed of. The operation of a control valve on a periodic basis allows for water and solids removal and disposal under gravity to the waste stream. The valve is set for 3 minutes open every 60 minutes. Clarified water gravity flows from the clarifier to the clarified water tank, a 22.5 m³ poly tank. The clarified water tank is fitted with a low-level switch that controls the booster pumps and is also fitted with an ultrasonic level transmitter for monitoring tank level.

The clarified water then flows through to the sand filter. Over time, the differential pressure will increase as the accumulated solids restrict flow. On a timed basis or a low UF inlet pressure, backwash will be performed. After backwash, clarified water is then used to top down wash the sand bed and dispose of the rinse water to the common waste line. The exit of the sand filter is fitted with a pressure transmitter for measuring discharge pressure which is used as a trigger for a backwash of the sand filter.

The water post sand filter is then passed through the activated carbon filter to remove solids, primarily metals, possible blue-green algal toxins, total organic carbon, and other contaminants. As with the sand filter, the activated carbon filter is backwashed. The source water for backwashing is water that has been filtered by the sand filter.

The water post carbon filtration flows through a 300-micron bag filter which is fitted with a pressure transmitter that will identify either the requirement for a bag change or a backwash of the carbon filter.

The UF process then filters the water to 40 nano-meters nominal size thereby removing most harmful blue-green algae and bacterium. The process involves passing the feed water through fine membrane tubules where water passes through into the "permeate" and retention of solids. The process is set with a crossflow where 20% of the feed flow reports as solids rich crossflow being disposed of via the common wastewater line.

The feed flow to UF is set by manipulation of a manual valve and setting of feed flow via a rotameter flow meter. Crossflow is set by similar means. Adjusting feed and crossflow valving impacts pressure profile around membranes.

After a set period, a backwash is performed whereby the feed is stopped by stopping the booster pumps and then control valving is changes. The backwash water is potable water which has been filtered by UF and chlorinated.

Permeate that exits the UF is dosed with sodium hypochlorite for disinfection. The product water is measured for turbidity, free chlorine, and conductivity. The permeate, now deemed potable water, flows to one of the four site potable water tanks.

The potable water system is recirculated from one tank to the other tanks within the storage system and is dosed with sodium hypochlorite to maintain stored potable water free chlorine. The potable water tank that is utilised for the supply to the recirculation and backwash pump is fitted with a low level switch to protect pumping and a high level switch that will stop/start process based on potable water inventory.

A schematic of the treatment plant is shown in Figure 7-1.

MINGO CROSSING

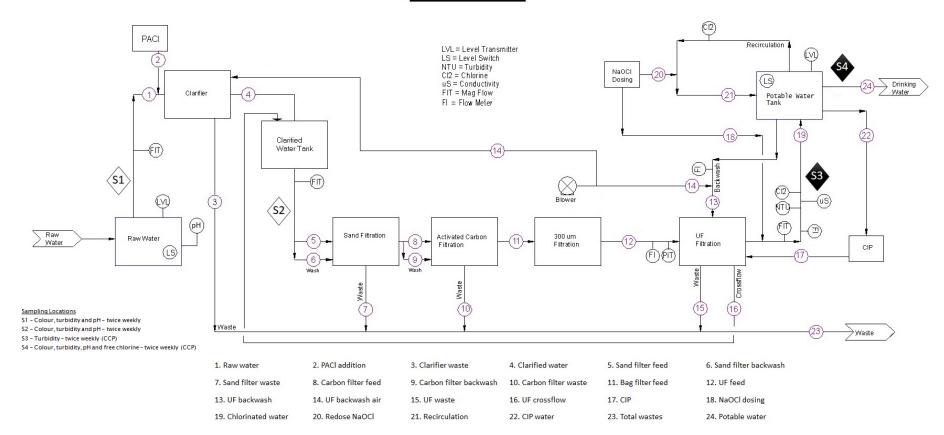


Figure 7-1 Mingo Crossing WTP Schematic

Revision 7

Distribution

The treated water is pumped from the potable water tanks directly to the caravan park internal plumbing.

Figure 7-2 Mingo Crossing Water Supply Map

Table 7-1 Infrastructure Details – Mingo Crossing Water Supply Scheme

	Component	Scheme
	Name	Burnett River Paradise Dam
	Туре	River/Impoundment
Sources	% of supply (normal)	100%
	Reliability	Very poor
	Water quality issues	Turbidity, colour, and high pH
	Туре	Pumped
		Pump Capacity = 66 L/min
Sourcing Infrastructure	Description	Centrifugal submersible bore pump mounted on pontoon
		Installed = 2013
	Ownership	NBRC
Are there any sources that do not undergo treatment prior to supply?	No	
	Name	Mingo Crossing WTP
	Process	Coagulation, clarification, sand filtration, carbon filtration, bag filtration, ultrafiltration, chlorination
	Design Capacity (20 hr operation)	32 kL/d
	Daily flow range	0.23 L/s (average) to 0.4 L/s (peak)
Mingo Crossing WTP	Chemicals added	Sodium hypochlorite
		PACI
	Standby chemical dosing facilities (Y/N)	Ν
	Water sourced from and %	Burnett River 0% - Other townships (trucked) – 100% (Emergency)
	% of average day demand provided	0%
	% of scheme supply	0%

Drinking Water Quality Management Plan

	Component	Scheme
	Distribution area supplied	Nil
	Bypasses / Variations	No
	Location	After ultrafiltration and into the potable water tanks
	Туре	Liquid sodium hypochlorite via LMI dosing pumps
	Dose rate	12 L/h (both dosing pumps)
	Target residual levels	0.7 – 1.7 mg/L (measured at the potable water tank 1)
	Duty/standby	No
Disinfection	Dosing arrangements	Fixed
		Low free chlorine
	Alarms	Low potable water level
		High turbidity level
	Auto shut-off arrangements	Y – based on low free chlorine

7.2 Mingo Crossing Water Quality: Identifying Hazards and Hazardous Events

The WTP was upgraded and commissioned on the 3rd of April 2019. Water quality information has been collected by NBRC for raw water and treated water since August 2015 and data summarised here includes results up to September 2018. Analysis of this data has been completed to assess the results in comparison to the ADWG guideline values for parameters measured. It is noted that no SunWater water quality data was reviewed for raw water.

A summary of the water analysis undertaken for the Mingo Crossing Caravan Park Water Supply Scheme is contained in Table 7-2, Table 7-3 and Table 7-4. Section 7.7 includes graphs of sampling data.

For raw water and treated water the following parameters have been measured on a regular basis:

- Conductivity
- pH
- Total & temporary hardness
- Alkalinity (including residual)
- Silica
- Total dissolved ions
- Total dissolved solids
- True colour
- Turbidity
- Saturation index
- Chlorine residual
- Total coliform
- E. coli
- Mole ratio

- Sodium absorption ratio
- Figure of merit ratio
- Cations (sodium, potassium, calcium, magnesium, and hydrogen)
- Anions (bicarbonate, carbonate, hydroxide, chloride, fluoride, nitrate, sulphate)
- Dissolved metals (iron, manganese, zinc, boron, copper, aluminium)
- Total metals (aluminium, arsenic, cadmium, chromium, copper, iron, lead, manganese, nickel, zinc)
- THM

Note that reticulated water had not been sampled or tested as explained in Section 7.1 above.

Interpretation

Over the period of testing, the frequency of sampling for Mingo Crossing was once a month for both raw water and for treated water.

For samples taken from the Mingo Crossing WTP, there is one occurrence of turbidity exceeding the guideline value (10/7/18). However, it was clear that the results were mixed up as the raw water turbidity taken on the same sample run was <1 NTU, while the treated water turbidity was 14 NTU. There were also three instances where total coliforms were detected and six instances where chlorine residual was below 0.2 mg/L in the treated samples.

No reticulated water quality data has been collected and therefore, no comment can be made at this time.

Table 7-2 Mingo Crossing Raw Water Source

			Mingo Crossin	g Source – Burnett R	iver		
Parameter							
(mg/L unless otherwise specified)	Sampling location	Time period	No of samples	Maximum Value	Average Value	Minimum Value	Comments
Turbidity (NTU)	River	Aug 2015 – Sep 2018	33	71	13.6	1	
Fluoride	River	Aug 2015 – Sep 2018	33	0.2	0.13	0.08	
Nitrate	River	Aug 2015 – Sep 2018	33	6.5	0.86	0.5	
Sulfate	River	Aug 2015 – Sep 2018	33	17	10.1	6	
Dissolved Metals							
Aluminium	River	Aug 2015 – Sep 2018	33	0.77	0.08	0.05	
Boron	River	Aug 2015 – Sep 2018	33	0.05	0.04	0.03	
Copper	River	Aug 2015 – Sep 2018	33	0.03	0.03	0.03	97% of values below LOR (i.e. <0.03)
Iron	River	Aug 2015 – Sep 2018	33	0.47	0.05	0.01	
Manganese	River	Aug 2015 – Sep 2018	33	0.01	0.01	0.01	All values below LOR (i.e. <0.01)
Zinc	River	Aug 2015 – Sep 2018	33	0.53	0.04	0.01	
Total metals							
Aluminium	Raw water tank	Nov 2017 – Oct 2018	4	0.77	0.52	0.11	
Arsenic	Raw water tank	Nov 2017 – Oct 2018	4	0.0024	0.0021	0.0014	
Cadmium	Raw water tank	Nov 2017 – Oct 2018	4	<0.0001	<0.0001	<0.0001	All samples taken were <0.0001 mg/L
Chromium	Raw water tank	Nov 2017 – Oct 2018	4	0.0011	0.0005	0.0002	
Copper	Raw water tank	Nov 2017 – Oct 2018	4	0.008	0.005	0.004	
Iron	Raw water tank	Nov 2017 – Oct 2018	4	1.2	0.51	0.14	
Lead	Raw water tank	Nov 2017 – Oct 2018	4	0.0007	0.0005	0.0002	
Manganese	Raw water tank	Nov 2017 – Oct 2018	4	0.04	0.027	0.015	
Nickel	Raw water tank	Nov 2017 – Oct 2018	4	0.0021	0.0017	0.0012	
Zinc	Raw water tank	Nov 2017 – Oct 2018	4	0.014	0.0077	0.005	

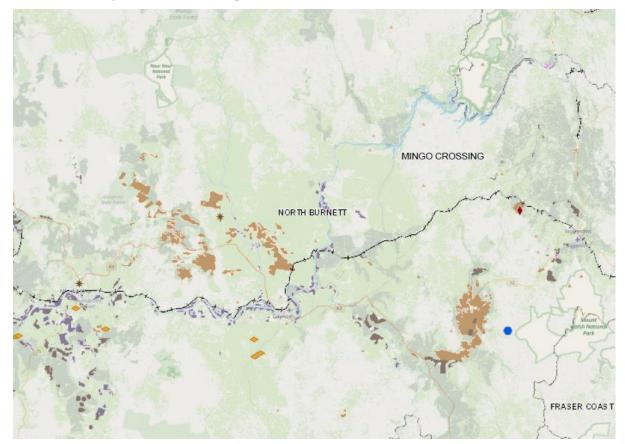
Drinking Water Quality Management Plan

Table 7-3 Mingo Crossing Treated Water

Plant						Mingo	Crossing WTP		
Parameter	Compliant		No of samples	Sur	nmary of re	sults	Australian Drinking Water Guidelines	No of samples exceeding	
(mg/L unless otherwise specified)	Sampling location	Time period	taken in time period	Maximum value	Average value	Minimum value	guideline value for health unless otherwise specified	Australian Drinking Water Guidelines guideline value	Comments
Turbidity (NTU)	WTP	Aug 2015 – Sep 2018	33	3	1.15	1	5	0	Exceedance in July 2018 but likely to be lab reporting error – reporting the raw water result rather than the treated water, as raw water result was <1NTU Aesthetic guideline only
Fluoride	WTP	Aug 2015 – Sep 2018	33	0.18	0.09	0.05	1.5	0	
Nitrate	WTP	Aug 2015 – Sep 2018	33	8.19	7.72	7	50	0	Aesthetic guideline only
Sulfate	WTP	Aug 2015 – Sep 2018	33	13.5	8.18	1	250	0	Aesthetic guideline only
pH (pH units)	WTP	Jun 2015 – Oct 2018	31	8.05	7.63	7.1	6.5-8.5	0	Aesthetic guideline only
Disinfectant residual	WTP	Jun 2015 – Oct 2018	31	4.3	0.9	0.01	>0.2 - 0.5	6	Guideline value is from the World Health Organization's Guidelines for Drinking-water Quality 4 th edition Chlorine residual below 0.2 in: June, Aug, Nov 2016 Jan, Sept 2017 Feb 2018
Total coliform (mpn/100mL)	WTP	Jun 2015 – Oct 2018	33	70	2.7	0	NA	NA	
<i>E. coli</i> (mpn/100mL)	WTP	Jun 2015 – Oct 2018	33	0	0	0	None detected	0	

Plant						Mingo	Crossing WTP		
Parameter	Sampling		No of samples	Sur	mmary of re	sults	Australian Drinking Water Guidelines	No of samples exceeding	
(mg/L unless otherwise specified)	location	Time period	taken in time period	Maximum value	Average value	Minimum value	guideline value for health unless otherwise specified	Australian Drinking Water Guidelines guideline value	Comments
Dissolved metals									
Aluminium	WTP	Aug 2015 – Sep 2018	33	<0.05	<0.05	<0.05	0.1	0	All values below limit of reporting
Boron	WTP	Aug 2015 – Sep 2018	33	0.05	0.03	0.03	1	0	Although 4mg/L is the health guideline value, concentrations in uncontaminated sources is usually <1 mg/L Most samples below detection limit
Copper	WTP	Aug 2015 – Sep 2018	33	<0.03	<0.03	<0.03	2 (1)	0	Number in brackets denotes the aesthetic guideline value All values below limit of reporting
Iron	WTP	Aug 2015 – Sep 2018	33	0.1	0.01	0.01	0.3	0	Aesthetic guideline only
Manganese	WTP	Aug 2015 – Sep 2018	33	0.03	0.01	0.01	0.5 (0.1)	0	Number in brackets denotes the aesthetic guideline value Most samples below detection limit
Zinc	WTP	Aug 2015 – Sep 2018	33	0.52	0.04	0.01	3	0	
Total metals									
Aluminium	WTP tap	Nov 2017 – Oct 2018	4	0.066	0.042	0.024	0.2	0	Aesthetic guideline only
Arsenic	WTP tap	Nov 2017 – Oct 2018	4	0.0007	0.0005	0.0003	0.01	0	
Cadmium	WTP tap	Nov 2017 – Oct 2018	4	<0.0001	<0.0001	<0.0001	0.002	0	All samples were <0.0001 mg/L

Plant						Mingo	Crossing WTP		
Parameter	Compliant		No of samples	Sur	nmary of re	sults	Australian Drinking Water Guidelines	No of samples exceeding	
(mg/L unless otherwise specified)	Sampling location	Time period	taken in time period	value value value		Minimum value	guideline value for health unless otherwise specified	Australian Drinking Water Guidelines guideline value	Comments
Chromium	WTP tap	Nov 2017 – Oct 2018	4	<0.0001	<0.0001	<0.0001	0.05	0	All samples were <0.0001 mg/L
Copper	WTP tap	Nov 2017 – Oct 2018	4	0.003	0.0027	0.002	2 (1)	0	Number in brackets denotes the aesthetic guideline value
Iron	WTP tap	Nov 2017 – Oct 2018	4	0.013	0.0075	0.005	0.3	0	Aesthetic guideline only
Lead	WTP tap	Nov 2017 – Oct 2018	4	0.0004	0.0003	0.002	0.01	0	
Manganese	WTP tap	Nov 2017 – Oct 2018	4	0.0025	0.0013	0.0004	0.5 (0.1)	0	Number in brackets denotes the aesthetic guideline value
Nickel	WTP tap	Nov 2017 – Oct 2018	4	0.0011	0.0009	0.0008	0.02	0	
Zinc	WTP tap	Nov 2017 – Oct 2018	4	0.006	0.0047	0.003	3	0	Aesthetic guideline only
Trihalomethanes	WTP tap	Jan 2018 – Oct 2018	3	0.11	0.094	0.079	0.25	0	


Table 7-4 Mingo Crossing Water Quality Complaints

Year	No of Water Quality Complaints	Water Quality Complaints per 1000 Connections	Main Reasons for Complaints	Likely Sources / Causes of Problems	Resolution of Problem
16-6-2015					
to	0	0			
26-10-2018					

7.3 Mingo Crossing Catchment Characteristics

The catchment for Mingo Crossing potable water source includes all the Burnett River and its tributaries to the north of the town. The topography of this large area includes hilly and undulating natural forest areas, river, and creek flats.

Land use within this area is varied and includes extensive irrigated citrus orchids, cropping and cattle grazing. The citrus growing area extends primarily from the north of Gayndah through to Mundubbera and continues along the Burnett to Eidsvold. Mingo Crossing is thus downstream of most of the economic activity within the NBRC region.

Legend:

© The State of Queensland. 2018 Imagery courtesy of ESRI World Imagery (c) ESRI 2014, MDS Basemap is copyright Map Data 2011 MapData Services Pty Ltd (MDS), PSMA

Figure 7-3 Mingo Crossing Catchment Area

7.4 Mingo Crossing Hazard Identification, Risk Assessment and Uncertainty

Table 7-5 Mingo Crossing Hazard Identification, Risk Assessment and Uncertainty

No				Ma	aximum Risk				Residual risk				Possible and Proposed Further Risk Reduction
	Scheme Component	Hazard	Hazard Source	Consequence	Likelihoo d	Risk level	Existing Preventive Measures / Barriers.	Consequence	Likelihood	Risk level	Level of Uncertainty	Comments	Actions (Risk Management Improvement Plan Actions)
												Intake is approximately 50m from the shoreline. Recreational activities are allowed on the dam. Area next to the intake is accessible by swimmers.	
1	Source water	Biological contamination Protozoa 	 Livestock Wildlife Issues with Bore Infiltration Septic 	Catastrophic	Possible	High (15)	 WTP process includes flocculation, clarification, filtration, UF and disinfection Raw and treated water monitoring program was reviewed to ensure its efficacy in providing sufficient data to provide confidence in the risk 	Catastrophic	Rare	Medium (8)	Confident	Likelihood categories based on <i>E. coli</i> results from 2015. Based on available data, no <i>E. coli</i> detection has been experienced since 2015 (ie 'Rare' likelihood). However, this is only 3 years' worth of data and therefore, the likelihood was increased to 'Unlikely'.	Investigate implementing an exclusion zone around the intake or moving the intake away from recreators, in consultation with SunWater.
			systems/sewage 5. Recreation				 categorisations. 3. Effluent Disposal area has been moved further from water offtake area. 					To find an alternative water source, a test bore was drilled in Jun 2017 and the water was tested. However, the water returned positive results for heavy metals and therefore, the water was considered not appropriate for potable use. Water carting to site is available if water	Investigate installing riparian Spear at current offtake site
												quality is not suitable. Intake is approximately 50m from the	
2	Source water	Biological contamination • Bacteria	 Livestock Wildlife Issues with Bore Infiltration Septic 	Catastrophic	Unlikely	High (10)	 WTP process includes flocculation, clarification, filtration, UF and disinfection Raw and treated water monitoring program was reviewed to ensure its efficacy in providing sufficient data to 	Catastrophic	Rare	Medium (6)	Confident	shoreline. Recreational activities are allowed on the dam. Area next to the intake is accessible by swimmers. Likelihood categories based on <i>E. coli</i> results from 2015. Based on available data, no <i>E. coli</i> detection has been experienced since 2015 (ie 'Rare' likelihood). However, this is only 3 years' worth of data and therefore, the likelihood was increased to 'Unlikely'.	Investigate implementing an exclusion zone around the intake or moving the intake away from recreators, in consultation with SunWater.
		• Viruses	Systems/sewage 5. Recreation				provide confidence in the risk categorisations.3. Effluent Disposal area has been moved further from water offtake area					To find an alternative water source, a test bore was drilled in Jun 2017 and the water was tested. However, the water returned positive results for heavy metals and therefore, the water was considered not appropriate for potable use. Water carting to site is available if water	Investigate installing riparian Spear at current offtake site
												quality is not suitable. Heavy metals and pesticides testing of the	
3	Source water	Chemical contamination Heavy metals 	1. Natural heavy metals and other chemicals in water	Major	Unlikely	Medium (8)	1. WTP process includes flocculation, clarification, filtration and UF.	Major	Rare	Medium (5)	Confident	raw water at Mingo Crossing commenced Dec 2017.	
												Heavy metal levels in treated water all below ADWG limits.	
4	Source water	Chemical contamination Nutrients: Nitrate Anions: Sulphate, Fluoride 	 Pesticides and Fertilisers Natural occurrences of anions 	Minor	Unlikely	Low (4)	1. WTP process includes flocculation, clarification, filtration and UF.	Minor	Rare	Low (2)	Confident	Based on monthly water quality data. No exceedances since 2015.	
5	Source water	Chemical contamination • General metals: Aluminium, Iron, Manganese, Boron, Copper	 Pesticides and Fertilisers Natural chemicals in water 	Moderate	Unlikely	Medium (6)	1. WTP process includes flocculation, clarification, filtration and UF.	Moderate	Rare	Low (3)	Confident	Based on monthly water quality data. No exceedances since 2015.	

Nic				Ма	ximum Risk				Residual risk			
No	Scheme Component	Hazard	Hazard Source	Consequence	Likelihoo d	Risk level	Existing Preventive Measures / Barriers.	Consequence	Likelihood	Risk level	Level of Uncertainty	
6	Source water	Chemical contamination	1. Accidental spills	Moderate	Rare	Low (3)	1. WTP process includes flocculation, clarification, filtration and UF.	Insignificant	Rare	Low (1)	Uncertain	Small concent consequence near the intak sewage leak fr Inability to pre
												possible spill.
7	Source water	Physical contamination • Ash • Mud	 Soil erosion Flood waters (high turbidity and colour) Bush fires 	Minor	Possible	Medium (6)	 WTP process includes flocculation, clarification, filtration, UF and chlorine disinfection. Water carting to site 	Minor	Unlikely	Low (4)	Confident	Occasional flo cannot be avo Site is closed o Water carting
8	Source water	Lack of supply	 River level drop beyond intake level Failure of intake pump Power failure Blockage of intake structure 	Moderate	Unlikely	Medium (6)	 Extension pipework available for when river levels drop Fire pump available to use as an alternative intake pump In case of power failure, there is approx. 2 days' worth of clearwater storage for potable water. Worst case scenario, the campers are suggested to vacate. Cart water 	Moderate	Likely	Medium (6)	Confident	Blockage from the past. Lowering of P: ongoing raw v The backup ge water pump tr Though once t is empty, alter is required.
9	Source water	Lack of supply	Climatic variations	Moderate	Unlikely	Medium (6)	1. Cart water	Moderate	Likely	Medium (6)	Confident	Uncertainty in
10	Treatment	Biological contamination • Bacteria • Viruses	 Failure of chlorine injection Insufficient chlorine residual Loss of chemical supplies Staff error Plant Design 	Major	Possible	High (12)	 Treatment processes – Chlorine disinfection post filtration and top up in Potable Water Tank Chlorine levels are tested at least once a week (ideally twice a week) Low free chlorine alarm Injection pumps and chlorine supply are also checked and inspected at the same time. Trained and qualified operators – good housekeeping Security and vermin-proofing Regular cleaning and maintenance of process equipment 	Major	Rare	Medium (5)	Reliable	
11	Treatment	Biological contamination Protozoa 	 Vermin and bird access Staff error Plant Design 	Catastrophic	Rare	Medium (6)	 Security and vermin-proofing Filtration Trained and qualified operators – good housekeeping 	Catastrophic	Rare	Medium (6)	Uncertain	Treated water line.

Comments	Possible and Proposed Further Risk Reduction Actions (Risk Management Improvement Plan Actions)
ncentration. Only risk of any real ence would be a chemical spill intake (ie fuel for boats, raw leak from motor homes).	
to predict type or consistency of spill.	
nal flooding of Burnett River ne avoided.	
osed during flood events.	
arting is available if required.	
e from weeds have occurred in g of Paradise Dam has caused raw water shortages sup generator can run the treated imp to supply the whole site. once the clearwater storage tank g alternative potable water source ed.	Seek assistance from Sunwater to provide reliable source infrastructure such as a riparian spear.
nty in future climate	Seek assistance from Sunwater to provide reliable source infrastructure such as a riparian spear.
water turbidity is monitored on-	

No				Ma	ximum Risk				Residual risk			Possible and Proposed Further Risk Reduction
	Scheme Component	Hazard	Hazard Source	Consequence	Likelihoo d	Risk level	Existing Preventive Measures / Barriers.	Consequence	Likelihood	Risk level	Level of Uncertainty	Comments Actions (Risk Management Improvement Plan Actions)
12	Treatment	Chemical contamination PACI	 Chemical overdose due to equipment failure Loss of chemical supplies Staff error Plant Design 	Minor	Unlikely	Low (4)	 Injection pumps and chemical supplies are also checked and inspected at least once a week. Trained and qualified operators – good housekeeping 	Minor	Rare	Low (2)	Uncertain	
13	Treatment	Disinfection by-products	 High raw water turbidity (dependent on nature of turbidity) Failure of ACH dosing Failure of filtration system 	Major	Rare	Medium (5)	 Treatment plant is designed to remove turbidity under normal raw water quality conditions In the event of highly turbid/coloured water, operation of the treatment plant would be suspended, and water carted in Regular maintenance of filter media and bag filters Mingo 2019-01: WTP now has online monitoring of turbidity with alarm. Continue to monitor THM monthly. 	Major	Rare	Medium (5)	Confident	Recent treated water THM results were all below ADWG limits.
14	Treatment	Physical/chemical contamination • Turbidity • Particulates	 Failure of filtration system Failure of dosing equipment High levels of turbidity Communication Breakdown Staff error 	Minor	Likely	Medium (8)	 Regular maintenance of filter media and bag filters In the event of highly turbid/coloured water, operation of the treatment plant would be suspended, and water carted in Trained and qualified operators – good housekeeping 	Minor	Unlikely	Low (4)	Confident	Existing measures are robust
15	Treatment	Clearwater storage tank pump failure	 Inadequate maintenance Power failure Communication Breakdown 	Moderate	Unlikely	Medium (6)	 Standby pump available If there is a power failure, the backup generator can run the treated water pump to supply the whole site. Cart water in if required 	Moderate	Rare	Low (3)	Confident	Existing measures are robust
16	Treatment	Plant Controls: Unregistered software (pirated) is unable to be patched or serviced	Contractor used pirated (Chinese) software for control system	Moderate	Certain	High (10)	System is operational and no side-effects are observed	Moderate	Certain	High (10)	Confident	Will be part of SCADA upgrade program Replace as part of SCADA Upgrade Program
17	Treatment	Chemical contamination from treatment components (tanks)	Butanone (Methyl ethyl Ketone) and Tetrahydrofuran (THF)	Moderate	Certain	High (10)	Tanks flushed before first use	Minor	Unlikely	Low (4)	Confident	Existing measures are robust

7.5 Mingo Crossing Risk Management Measures

Table 7-6 Existing and Proposed Preventative Measures

No.	Scheme Component	Hazard	Hazard Source	What are the existing preventative measures?	Do existing preventative measures impact on likelihood &/or consequence?	How effective is/are the existing preventative measure/s & on what basis has this been determined?	Residual risk after preventative measures	Is the level of residual risk acceptable	Proposed r
1	Source water	Biological contaminationProtozoa	 Livestock Wildlife Issues with Bore Infiltration Septic systems/sewage Recreation 	WTP process includes flocculation, clarification, filtration, UF and disinfection	Likelihood	Effective	High (10)	No	Investigate im around the in from recreato Investigate in offtake site
2	Source water	Biological contaminationBacteriaViruses	 Livestock Wildlife Issues with Bore Infiltration Septic Systems/sewage Recreation 	Raw and treated water monitoring program was reviewed to ensure its efficacy in providing sufficient data to provide confidence in the risk categorisations.	Likelihood	Effective	Medium (6)	No	Investigate im around the in from recreato Investigate ins offtake site
3	Source water	Chemical contamination Heavy metals 	1. Natural heavy metals and other chemicals in water	Effluent Disposal area has been moved further from water offtake area.	Likelihood	Effective based on recent data	Medium (5)	No	
4	Source water	Chemical contaminationNutrients: NitrateAnions: Sulphate, Fluoride	 Pesticides and Fertilisers Natural occurrences of anions 	WTP process includes flocculation, clarification, filtration, UF and disinfection	Likelihood	Limited reduction based on data	Low (2)	Yes	
5	Source water	Chemical contamination General metals: Aluminium, Iron, Manganese, Boron, Copper 	 Pesticides and Fertilisers Natural chemicals in water 	Raw and treated water monitoring program was reviewed to ensure its efficacy in providing sufficient data to provide confidence in the risk categorisations.	Likelihood	Uncertain as levels in raw water are already low	Low (3)	Yes	
6	Source water	Chemical contamination	1. Accidental spills	Effluent Disposal area has been moved further from water offtake area	Consequence	Uncertain	Low (1)	Yes	
7	Source water	Physical contamination Ash Mud	 Soil erosion Flood waters (high turbidity and colour) Bush fires 	1. WTP process includes flocculation, clarification, filtration and UF.	Likelihood	Effective	Low (4)	Yes	
8	Source water	Lack of supply	 River level drop below intake level Failure of intake pump Power failure Blockage of intake structure 	1. Truck water	Likelihood	Effective	Medium (6)	Yes	Seek assistand reliable source spear.
9	Source water	Lack of supply	Climatic variations	1. Truck Water	Likelihood	Effective	Medium (6)	Yes	Seek assistand reliable source spear.
10	Treatment	Biological contaminationBacteriaViruses	 Failure of chlorine injection Insufficient chlorine residual Loss of chemical supplies Staff error Plant Design 	1. WTP process includes flocculation, clarification, filtration and UF.	Likelihood	Effective	Medium (5)	Yes	

d measures to reach an acceptable level or residual risk	Responsible Work Unit/ Organisation (& arrangements with external organisation if applicable)
implementing an exclusion zone intake or moving the intake away ators, in consultation with SunWater. installing riparian Spear at current	Water and Sewerage
implementing an exclusion zone intake or moving the intake away ators, in consultation with SunWater. installing riparian Spear at current	Water and Sewerage
ance from Sunwater to provide Irce infrastructure such as a riparian	Water and Sewerage
ance from Sunwater to provide arce infrastructure such as a riparian	Water and Sewerage

No.	Scheme Component	Hazard	Hazard Source	What are the existing preventative measures?	Do existing preventative measures impact on likelihood &/or consequence?	How effective is/are the existing preventative measure/s & on what basis has this been determined?	Residual risk after preventative measures	Is the level of residual risk acceptable	Proposed
11	Treatment	Biological contaminationProtozoa	 Vermin and bird access Staff error Plant Design 	1. WTP process includes flocculation, clarification, filtration, UF and chlorine disinfection. Implemented a regular tank inspection regime.	No change	Uncertain	Medium (6)	No	
12	Treatment	Chemical contamination PACI 	 Chemical overdose due to equipment failure Loss of chemical supplies Staff error Plant Design 	2. Water carting to site	Likelihood	Effective	Low (2)	Yes	
13	Treatment	Disinfection by-products	 High raw water turbidity (dependent on nature of turbidity) Failure of ACH dosing Failure of filtration system 	 Extension pipework available for when river levels drop 	No change	Effective. No THM exceedances recorded in treated water.	Medium (5)	Yes	
14	Treatment	Physical/chemical contaminationTurbidityParticulates	 Failure of filtration system Failure of dosing equipment High levels of turbidity Communication Breakdown Staff error 	2. Fire pump available to use as an alternative intake pump	Likelihood	Effective	Low (4)	Yes	
15	Treatment	Clearwater storage tank pump failure	 Inadequate maintenance Power failure Communication Breakdown 	3. In case of power failure, there is approx. 2 days' worth of clearwater storage for potable water. Worst case scenario, the campers are suggested to vacate.	Likelihood	Effective	Low (3)	Yes	
16	Treatment	Plant Controls: Unregistered software (pirated) is unable to be patched or serviced	Contractor used pirated (Chinese) software for control system	4. Observation	No change	Uncertain	High (10)	No	Replace as pa
17	Treatment	Chemical contamination from treatment components (tanks)	Butanone (Methyl ethyl Ketone) and Tetrahydrofuran (THF)	Tanks flushed before first use	Likelihood	Effective	Low (4)	Yes	

d measures to reach an acceptable level or residual risk	Responsible Work Unit/ Organisation (& arrangements with external organisation if applicable)
part of SCADA Upgrade Program	Water and Wastewater

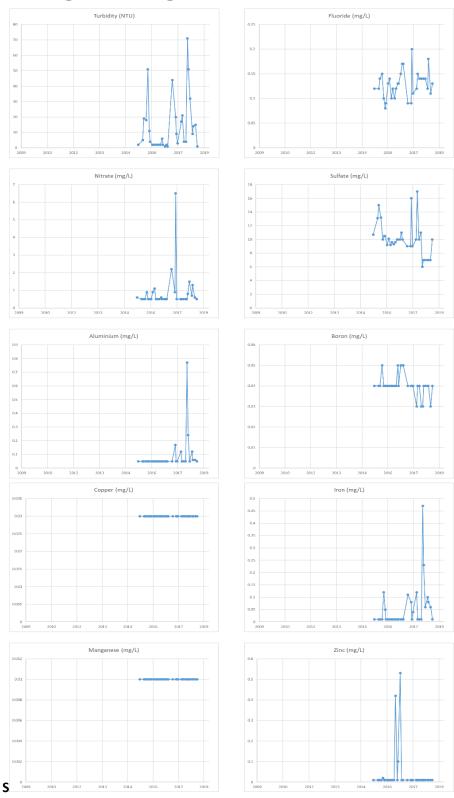
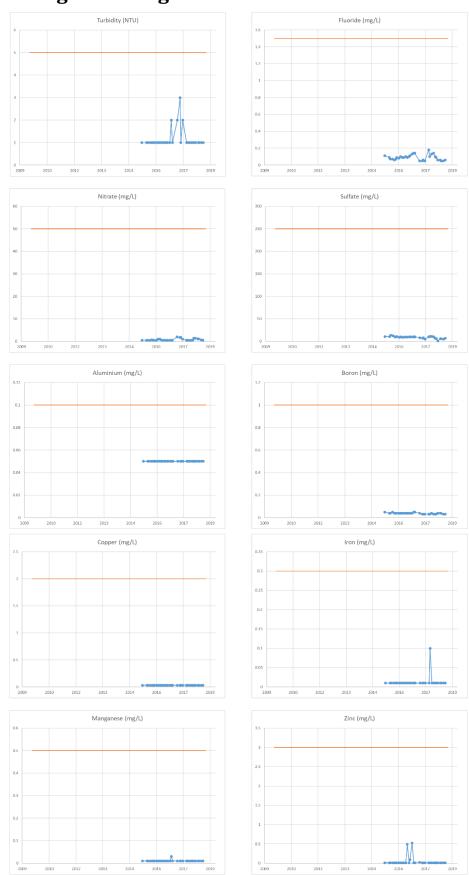

7.6 Mingo Crossing Risk Management Improvement Program

Table 7-7 Mingo Crossing Risk Improvement Program


Risk No.	Scheme Component / Sub- component Hazard/ Hazardous event		Priority	Risk Improvement Actions				Estimated cost	Responsibility
140.	component	component hazara, nazarada erent		interim	short-term	long-term			
1	Source	Biological contamination Protozoa 	Medium		Investigate implementing an exclusion zone around the intake or moving the intake away from recreational water users, in consultation with SunWater.	Investigate installing riparian Spear at current offtake site	20/06/2022	\$1500 for signage. Sunwater to supply	Water and Wastewater
2	Source water	Biological contaminationBacteriaViruses	Medium			Investigate installing riparian Spear at current offtake site	20/06/2022	\$1500 for signage. Sunwater to supply	Water and Wastewater
8	Source	Lack of supply	High	Truck water		Seek assistance from Sunwater to provide reliable source infrastructure such as a riparian spear.	20/06/2022	Sunwater to supply	Water and Wastewater
9	Source	Lack of supply	High	Truck water		Seek assistance from Sunwater to provide reliable source infrastructure such as a riparian spear.	20/06/2022	Sunwater to supply	Water and Wastewater
16	Treatment	Plant Controls: Unregistered software (pirated) is unable to be patched or serviced	Medium	Monitor		Replace as part of SCADA Upgrade Program	30/06/2024	\$50,000	Water and Wastewater

7.7 Mingo Crossing Water Supply Scheme Water Quality Data

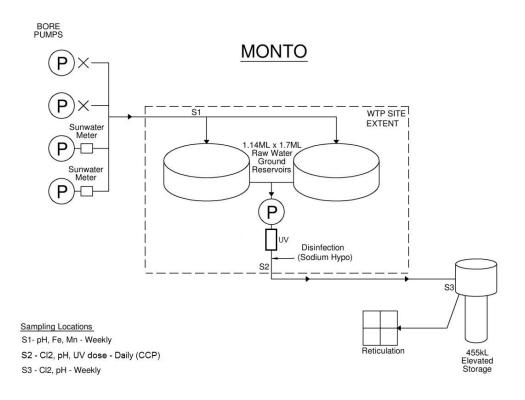
The results are spread across the twelve-month period of the year indicated. Note the orange lines indicate the ADWG limits.

Mingo Crossing - Raw Water 2016 - 2018

Mingo Crossing – Treated Water 2016 – 2018

Revision 7.1

8. MONTO WATER SUPPLY SCHEME


8.1 Details of Infrastructure for Providing the Service

Source Water

The source of supply has been the groundwater in the alluvium of Three Moon Creek in its confluence with Monal Creek north-west of the town. Although there are six available bore sites within the bore field, four have bores, only two are equipped with pumps and functioning and both these are equipped with SunWater flowmeters. Water is pumped from the two operational bores through a 250mm AC rising main to a 1.14ML and a 1.7ML raw water ground level reservoirs located on the western edge of town.

Treatment Process

The water quality has been traditionally of high standard and therefore only undergoes chlorination through liquid sodium hypochlorite injection (see Figure 8-1). The liquid sodium hypochlorite injection occurs after the raw water ground reservoirs and prior to the distribution system.

Figure 8-1 Monto WTP Schematic

The Monto WTP is automatic in operation with daily inspections carried out by operators. The WTP pumps and reservoir levels are linked to the SCADA system. If problems at these WTP elements are detected through SCADA (i.e. failure of chlorine dosing or reservoir levels) an alarm is triggered and an SMS is sent to the operator's phone and laptops, who will then visit the site as a special call out to address this alarm incident. There is no provision for bypassing the raw water reservoir and the dosing

point. Provision for bypass of raw water storage is being undertaken to allow maintenance work without restricting operations.

Chlorine injection at the WTP is also linked to the SCADA system. In-line chlorine and turbidity analyser will assist in failure detection. There is a 1,500 L chlorine storage tank at the WTP, the level of which is reviewed daily by operators. There is no documented WTP operation manual.

In June 2018, a UV unit was installed downstream of the raw water ground reservoirs as per the Monto's Risk Improvement Program.

Distribution System

The township of Monto had its first reticulated water supply system installed in 1949-1950. Most of the mains have been replaced since the Council amalgamation in 2008. All the 250 mm mains have been replaced, with only minor reticulation remaining to be progressively replaced.

Treated water is pumped to a 455kL elevated reservoir located on the eastern sector of the town. A recent upgrade has been completed which feeds treated water directly to the high tower. Following treatment and storage, water is gravity fed to the reticulation system.

Sampling locations are sited at key points determined to provide the best indication of chlorine residual levels in the system. Samples are also taken as water leaves the reservoir. Chlorine residuals in the network are sampled and tested on-site weekly. Raw water and treated water samples are sent to the Queensland Health Laboratory for chemical analysis. Raw water and treated water samples are sent regularly to the Qld Health Laboratory for biological testing.

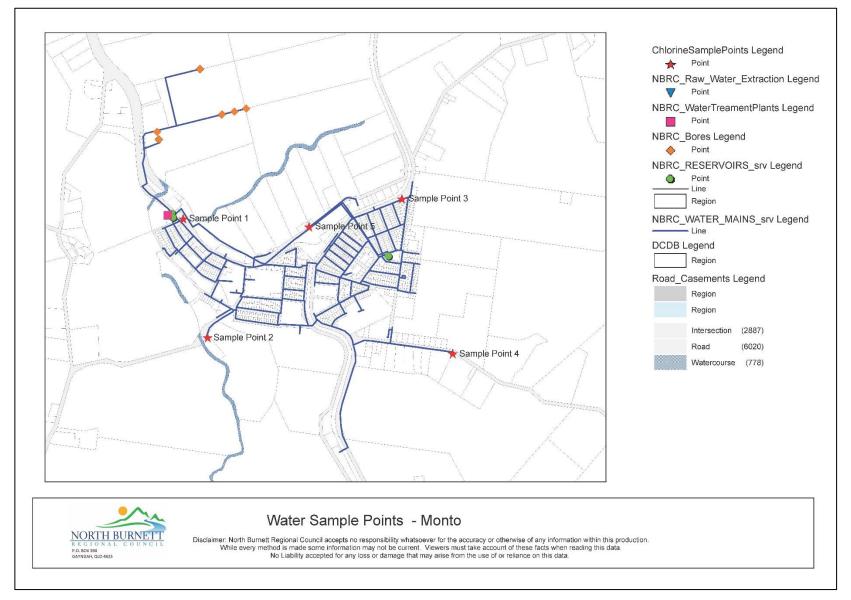


Figure 8-2 Monto Water Supply Map

Drinking Water Quality Management Plan

Revision 7

Table 8-1 Infrastructure Details – Monto Water Supply Scheme

	Component	Scheme 1		
	Name	Three Moon Creek Bores		
	Туре	Bore field x 4 bores with only two equipped		
Sources	% of supply	100%		
5001005	Reliability	High		
	Water quality issues	Minimal. Iron and manganese is present at low levels generally below 0.03. Total coliform presence is rare in raw water.		
	Туре	Pumped bore		
	Description	Alluvial gravels of Three Moon Creek, 18 metres deep		
		Pump Capacity = 8 L/s		
	Bore 3	Bore Pumps		
		Static Water Level = 20-21m		
Sourcing Infrastructure		Draw down Level = 21.5-22m		
		Pump Capacity = 16L/s @ 45m		
	Bore 4	Bore Pumps		
		Static Water Level = 20-21m		
		Draw down Level = 22.5-23m		
	Ownership	NBRC		
Are there any sources that do not undergo treatment prior to supply?	No			
	Name	Monto WTP		
Monto WTP	Process	Disinfection		
	Design Capacity (20 hr operation)	1.92 ML/d		

Drinking Water Quality Management Plan

	Component	Scheme 1
	Daily flow range	0.5 – 1.5 ML/d
	Chemicals added	Sodium Hypochlorite
	Standby chemical dosing facilities (Y/N)	Ν
	Water sourced from and %	Bores 100%
	% of average day demand provided	100%
	% of scheme supply	100%
	Distribution area supplied	100%
	Bypasses / Variations	No
	Location	Reservoir supply pump station
	Туре	Liquid sodium hypochlorite
	Dose rate	Driven by in-line analyser
	Target residual levels	0.5 mg/l
	Duty/standby	nil
	Dosing arrangements	fixed
	Alarms	nil
Disinfection	Auto shut-off arrangements	No
	Location	Post transfer pump
	Туре	Wedeco Spektron 50e U.V
	Dose rate	49 mJ/cm ² for a flow up to 15 L/s at a UVT of over 86%
	Target residual levels	NA
	Duty/standby	No
	Dosing arrangements	NA
	Alarms	Yes

	Component	Scheme 1
	Auto shut-off arrangements	Yes
	Pipe material	AC
	Age range	65 years plus
	Approx % of total length	35%
	Pipe material	PVC
Distribution and Reticulation System	Age range	0-12 years
Reficulation System	Approx % of total length	65%
	Areas where potential long detention periods could be expected	Nil
	Areas where low water pressure (e.g. < 12 m) could be expected during peak or other demand periods)	Nil
	Ground	1
	Name	Raw Water Ground Reservoir
	Capacity (ML)	1.14ML
	Roofed (Y/N)	γ
	Vermin-proof (Y/N)	Y
	Runoff directed off roof (Y/N)	Y
Reservoirs	Ground	2
	Name	Raw Water Ground Reservoir
	Capacity (ML)	1.7ML
	Roofed (Y/N)	Y
	Vermin-proof (Y/N)	Y
	Runoff directed off roof (Y/N)	Y
	Elevated	2

Component	Scheme 1
Name	Elevated Reservoir
Capacity (ML)	0.455ML
Roofed (Y/N)	Y
Vermin-proof (Y/N)	γ
Runoff directed off roof (Y/N)	Y

8.2 Monto Water Quality: Identifying Hazards and Hazardous Events

Water quality information has been collected by NBRC for raw water, treated water and reticulated supply for the period of January 2010 to November 2018. Analysis of this data has been completed to assess the results in comparison to the ADWG guideline values for parameters measured.

A summary of the water analysis undertaken for the Monto Water Supply Scheme is contained in Table 8-2, Table 8-3, Table 8-4 and Table 8-5. Section 8.7 includes graphs of sampling data.

For raw water and treated water the following parameters have been measured monthly:

- Conductivity
- pH
- Total & temporary hardness
- Alkalinity (including residual)
- Silica
- Total dissolved ions
- Total dissolved solids
- True colour
- Turbidity
- Saturation index
- Mole ratio
- Sodium absorption ratio

- Figure of merit ratio
- Cations (sodium, potassium, calcium, magnesium, and hydrogen)
- Anions (bicarbonate, carbonate, hydroxide, chloride, fluoride, nitrate, sulphate)
- Dissolved metals (iron, manganese, zinc, boron, copper, aluminium)
- Total metals (aluminium, arsenic, cadmium, chromium, copper, iron, lead, manganese, nickel, zinc)
- THM

The reticulated water scheme has been measured for pH, residual chlorine, *E. coli* and total coliforms.

Interpretation

In recent history, over the period of testing reviewed, the average sampling frequency for Monto is approximately twice a month for raw water, treated water and for the reticulated system.

Within the raw water sampling data, only a limited number of samples exceeded the guideline value for turbidity, iron, manganese, and sulphate. All other values are below the guideline values for treated water.

For sampling data taken from the Monto WTP there are six occurrences of turbidity exceeding the guideline value, all other parameters are below the guideline values.

Within the reticulation system, there were two occurrences when manganese exceeded the aesthetic guideline levels. There was one instance of total coliform being detected within the distribution system. There were potential water quality issues within the reticulation system due to low levels of residual chlorine and total coliforms being detected. Increased frequency of sampling and testing, and operational response, has since reduced this risk.

Table 8-2 Monto Raw Water Source

Monto Source – Three Moon Creek Bores												
Parameter					Summary of Results							
(mg/L unless otherwise specified)	Sampling location	Time Period	No of samples	Maximum Value	Average Value	Minimum Value	Comments					
Turbidity (NTU)	Bore	Jan 2010 – Nov 2018	167	348	5.17	<1.0	Bore number to be recorded					
Fluoride	Bore	Jan 2010 – Nov 2018	167	0.5	0.16	<0.05						
Nitrate	Bore	Jan 2010 – Nov 2018	167	10	3.2	<0.5	Multiple limits of detection were used (<0.5 and <5). To calculate the stats, the absolute values were used.					
Sulfate	Bore	Jan 2010 – Nov 2018	167	700	27.7	7						
Dissolved metals												
Aluminium	Bore	Jan 2010 – Nov 2018	167	0.10	0.05	<0.05	Multiple limits of detection were used (<0.05 and <0.1). In order to calculate the stats, the absolute values were used.					
Boron	Bore	Jan 2010 – Nov 2018	167	0.09	0.04	0.02						
Copper	Bore	Jan 2010 – Nov 2018	167	0.06	0.03	<0.03	Multiple limits of detection were used (<0.03 and <0.06). In order to calculate the stats, the absolute values were used.					
Iron	Bore	Jan 2010 – Nov 2018	167	0.4	0.01	<0.01						
Manganese	Bore	Jan 2010 – Nov 2018	167	1.8	0.06	<0.01						
Zinc	Bore	Jan 2010 – Nov 2018	167	0.3	0.03	<0.01						
Total metals			_									
Aluminium	Res	Nov 2017 – Oct 2018	2	<0.03	<0.03	<0.03	All samples taken were <0.03 mg/L					
Arsenic	Res	Nov 2017 – Oct 2018	2	0.0005	0.0005	0.0005	All samples taken were 0.0005 mg/L					

Drinking Water Quality Management Plan

	Monto Source – Three Moon Creek Bores													
Parameter (mg/L unless	Sampling		No of		Summary of Results	Comments								
otherwise specified)	location	Time Period	samples	Maximum Value	Average Value	Minimum Value								
Cadmium	Res	Nov 2017 – Oct 2018	2	<0.0001	<0.0001	<0.0001	All samples were <0.0001 mg/L							
Chromium	Res	Nov 2017 – Oct 2018	2	<0.0001	<0.0001	<0.0001	All samples were <0.0001 mg/L							
Copper	Res	Nov 2017 – Oct 2018	2	0.003	0.002	<0.001								
Iron	Res	Nov 2017 – Oct 2018	2	0.013	0.011	0.012								
Lead	Res	Nov 2017 – Oct 2018	2	0.001	0.0005	<0.0001								
Manganese	Res	Nov 2017 – Oct 2018	2	0.046	0.034	0.023								
Nickel	Res	Nov 2017 – Oct 2018	2	0.0005	0.0004	0.0003								
Zinc	Res	Nov 2017 – Oct 2018	2	0.004	0.0025	0.001								

Table 8-3 Monto Treated Water

Plant					Mont	o WTP				
Parameter				No of samples	Summary of results			Australian Drinking Water Guidelines	No of samples exceeding Australian Drinking	
(mg/L unless otherwise specified)	Sampling location(s)	Time Period	taken in time period	Maximum Value	Average Value	Minimum Value	guideline value for health unless otherwise specified	Drinking Water Guidelines guideline value	Comment	
Turbidity (NTU)	WTP	Jan 2010 – Nov 2018	106	20	1.99	<1	5	6	Aesthetic guideline only	
									Exceedances in Apr and May 2010, Apr 2016, and Mar and May 2017	
Fluoride	WTP	Jan 2010 – Nov 2018	106	0.80	0.22	01	1.5	0		
Nitrate	WTP	Jan 2010 – Nov 2018	106	6.4	2.3	0.5	50	0	Aesthetic guideline only	
Sulfate	WTP	Jan 2010 – Nov 2018	106	50.0	20.9	11.3	250	0	Aesthetic guideline only	
Dissolved metals				-	•	•				
Aluminium	WTP	Jan 2010 – Nov 2018	106	<0.05	<0.05	<0.05	0.1	0	Although 0.2mg/L is the aesthetic guideline value, <0.1 mg/L is desirable All values below detection limit	
Boron	WTP	Jan 2010 – Nov 2018	106	0.08	0.05	0.03	1	0	Although 4mg/L is the health guideline value, concentrations in uncontaminated sources is usually <1 mg/L	

Plant		Monto WTP										
Parameter (mg/L unless otherwise specified)	Sampling		No of samples	Si	Immary of rea	sults	Australian Drinking Water Guidelines	No of samples exceeding Australian				
	Sampling location(s)	- Lime Period		Maximum Value	Average Value	Minimum Value	guideline value for health unless otherwise specified	Drinking Water Guidelines guideline value	Comment			
Copper	WTP	Jan 2010 – Nov 2018	106	0.14	0.03	<0.03	1	0	Multiple limits of detection were used (<0.05 and <0.1). To calculate the stats, the absolute values were used.			
Iron	WTP	Jan 2010 – Nov 2018	106	0.01	0.01	<0.01	0.3	0	Aesthetic guideline only			
Manganese	WTP	Jan 2010 – Nov 2018	106	0.08	0.01	<0.01	0.5 (0.1)	0	Number in brackets denotes the aesthetic guideline value			
Zinc	WTP	Jan 2010 – Nov 2018	106	0.32	0.02	<0.01	3	0				

Table 8-4 Monto Reticulated Water

Scheme Sampling Location	Monto Reticulated Water									
Parameter (mg/L unless		No of	S	Summary of Resul	ts	Australian Drinking Water Guidelines	No of samples exceeding Australian	Comment		
otherwise specified)	Time Period	samples	Maximum Value	Average Value	Minimum Value	guideline value for health unless otherwise specified	Drinking Water Guidelines guideline value			
pH (pH units)	Jan 2010 – Nov 2018	167	7.9	7.4	6.8	6.5 - 8.5	0	Aesthetic guideline only		

Drinking Water Quality Management Plan

Revision 7.1

Scheme Sampling Location	Monto Reticulated Water											
Parameter		No of		Summary of Result	ts	Australian Drinking Water Guidelines	No of samples exceeding Australian					
(mg/L unless otherwise specified)	Time Period	samples	Maximum Value	Average Value	Minimum Value	guideline value for health unless otherwise specified	Drinking Water Guidelines guideline value	Comment				
Disinfectant residual	July 2016 – Nov 2018	347	2.6	1.4	0.35	>0.2 - 0.5	0	Guideline value is from the World Health Organization's Guidelines for Drinking-water Quality 4 th edition				
Total coliforms (mpn/100mL)	July 2016 – Nov 2018	350	1	0.003	0	NA	NA					
E. coli	July 2016 – Nov 2018	350	0	0	0	None Detected	0					
Total metals												
Aluminium	Nov 2017 – Oct 2018	3	0.03	0.017	0.011	0.2	0	Aesthetic guideline only				
								Max value is actually <0.03 mg/L.				
Arsenic	Nov 2017 – Oct 2018	3	0.0008	0.0006	0.0005	0.01	0					
Cadmium	Nov 2017 – Oct 2018	3	<0.0001	<0.0001	<0.0001	0.002	0	All samples were <0.0001 mg/L				
Chromium	Nov 2017 – Oct 2018	3	0.001	0.0004	<0.0001	0.05	0					
Copper	Nov 2017 – Oct 2018	3	0.019	0.016	0.014	2 (1)	0	Number in brackets denotes the aesthetic guideline value				
Iron	Nov 2017 – Oct 2018	3	0.049	0.03	0.007	0.3	0	Aesthetic guideline only				
Lead	Nov 2017 – Oct 2018	3	0.0024	0.0014	0.0008	0.01	0					

Scheme Sampling Location	Monto Reticulated Water										
Parameter (mg/L unless		No of	S	Summary of Resul	ts	Australian Drinking Water Guidelines	No of samples exceeding Australian	Comment			
otherwise specified)	Time Period	samples	Maximum Value	Average Value	Minimum Value	guideline value for health unless otherwise specified	Drinking Water Guidelines guideline value				
Manganese	Nov 2017 – Oct 2018	3	0.2	0.11	0.012	0.5 (0.1)	2	Number in brackets denotes the aesthetic guideline value Exceedance of aesthetic limit in April and October 2018			
Nickel	Nov 2017 – Oct 2018	3	0.0021	0.001	0.0005	0.02	0				
Zinc	Nov 2017 – Oct 2018	3	0.007	0.006	0.005	3	0	Aesthetic guideline only			
Trihalomethanes	Sept 2016 – Oct 2018	3	0.063	0.041	0.026	0.25	0				

Table 8-5 Monto Water Quality Complaints

Year	No of Water Quality Complaints	Water Quality Complaints per 1000 Connections	Main Reasons for Complaints	Likely Sources / Causes of Problems	Resolution of Problem		
1-7-2010							
to	0	0					
26-10-2018							

8.3 Monto Catchment Characteristics

Monto Township is supplied with water from bores in Three Moon Creek. Cania dam, upstream of Monto, is located on the Three Moon Creek and is the major water storage in the area. The catchment for Cania Dam is fed by Three Moon and Munholme Creeks which originate in the surrounding Dawes Ranges. Periodic water releases from Cania Dam recharge the alluvium of the Three Moon Creek.

The predominant land-use in this area is National Park and low-density cattle grazing on mostly unimproved pasture. Land use downstream of Cania Dam includes grazing, fodder cropping and piggeries. Irrigation for the cropping and piggeries is typically drawn from alluvial bores as is the Monto town water supply. The land-use activities upstream of the township water source pose only a minor concern for the quality of the raw water supply to Monto, as the filtering process of the alluvial sands provides an effective filtering and quality improvement mechanism. The town bores have a sanitary seal to the bore heads, which eliminates the possibility of contaminated surface water ingress.

It is to be noted that the Piggeries are not in proximity to the bore field, so are currently not considered an extra risk. However, any future expansions towards the bore field will need to be noted and may need to be assessed for its impact on raw water quality.

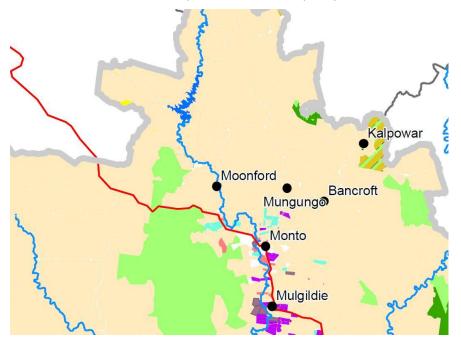


Figure 8-3 Monto Catchment Area

8.4 Monto Hazard Identification, Risk Assessment and Uncertainty

Table 8-6 Monto Hazard Identification, Risk Assessment and Uncertainty

No.	Scheme Component	Hazard	Hazard Source		Maximum Risk		Existing Preventive Measures / Barriers.	Residual risk		Residual risk Level of Uncertainty		Comments	Possible and Proposed Further Risk Reduction Actions (Risk Management Improvement Plan Actions)
				Consequence	Likelihood	Risk level		Consequence	Likelihood	Risk level			
1	Source water	Biological contamination • Protozoa	 Livestock Wildlife Issues with Bore Infiltration Septic systems/sewage Recreation 	Catastrophic	Unlikely	High (10)	 The bores are sealed and appropriately cased so storm runoff and infiltration are avoided and vermin cannot enter. UV 	Catastrophic	Rare	Medium (6)	Estimate	Inability to detect contamination	Sanitary survey to identify the potential risks and the source of the protozoa
2	Source water	Biological contamination • Bacteria • Viruses	 Livestock Wildlife Issues with Bore Infiltration Septic Systems/sewage Recreation 	Catastrophic	Unlikely	High (10)	 The bores are completely enclosed and appropriately cased so storm runoff and infiltration is avoided and vermin cannot enter. Treatment processes – Chlorine disinfection, UV 	Catastrophic	Rare	Medium (6)	Confident	Existing measures are robust	Sanitary survey to identify the potential risks and the source
3	Source water	Chemical contamination • Heavy metals	1. Natural heavy metals and other chemicals in water	Major	Unlikely	Medium (8)	 The bores are completely enclosed and appropriately cased so storm runoff and infiltration is avoided and vermin cannot enter. Treatment processes – Chlorine disinfection 	Major	Rare	Medium (5)	Confident	Main concern is arsenic level in raw water which is still below safe levels.	
4	Source water	Chemical contamination • Nutrients: Nitrate • Anions: Sulphate, Fluoride	 Pesticides and Fertilisers Natural occurrences of anions 	Minor	Possible	Medium (6)	 The bores are completely enclosed and appropriately cased so storm runoff and infiltration is avoided and vermin cannot enter. Treatment processes – Chlorine disinfection 	Minor	Unlikely	Low (4)	Confident	Few farmers use either pesticides or fertiliser as the area is predominantly grazing.	
5	Source water	Chemical contamination • General metals: Aluminium, Iron, Manganese, Boron, Copper	 Pesticides and Fertilisers Natural chemicals in water 	Moderate	Unlikely	Medium (6)	 The bores are completely enclosed and appropriately cased so storm runoff and infiltration is avoided and vermin cannot enter. Treatment processes – Chlorine disinfection 	Moderate	Rare	Low (3)	Confident	Few farmers use either pesticides or fertiliser as the area is predominantly grazing.	
6	Source water	Chemical contamination	Accidental spills	Moderate	Rare	Low (3)	 Detection and dilution during treatment processes and storage Emergency response Public notification process (do not drink alert) 	Insignificant	Rare	Low (1)	Uncertain	Small concentration. Only risk of any real consequence would be a chemical spill near the intake Inability to predict type or consistency of possible spill?	
7	Source water	Physical contamination • Ash • Mud	 Soil erosion Flood waters (high turbidity and colour) Bush fires Major Storms 	Minor	Unlikely	Low (4)	 Public notification process (boil water alert) Detention time in reservoir for settling out particulates 	Minor	Unlikely	Low (4)	Confident	Existing measures are robust	
8	Source water	Lack of supply	 Inadequate maintenance Lack or failure of standby pumps Power failure 	Moderate	Unlikely	Medium (6)	 Two alternative sources of supply with individual pumps. Estimated 4-5 day's supply in raw water reservoirs. 	Moderate	Rare	Low (3)	Confident	Existing measures are robust	
9	Source water	Lack of supply	Climatic variations	Moderate	Unlikely	Medium (6)	1. Importing water	Moderate	Rare	Low (2)	Uncertain	Uncertainty in future climate	

No.	Scheme Component	Hazard	Hazard Source	iource			Existing Preventive Measures / Barriers.	Residual risk			Level of Uncertainty	Comments	Possible and Proposed Further Risk Reduction Actions (Risk Management Improvement Plan Actions)
				Consequence	Likelihood	Risk level		Consequence	Likelihood	Risk level			
							 Drought management Plan actions: restrictions, communication etc. 						
							1. Treatment processes – Chlorine disinfection post UV						
							2. Chlorine levels are tested once per day at WTP.						
			1. Failure of chlorine injection				 Chlorine residual tested at least weekly in reticulation system 						
10		Biological contamination	2. Insufficient chlorine residual				 Injection pump and chlorine supply are also checked and inspected at the same time. 			Medium			
10	Treatment	• Bacteria	3. Loss of Chemical supplies	Major	Possible	High (12)	5. Public notification process (boil water alert)	Major	Rare	(5)	Confident	Multiple barriers	UV Operational review
		Viruses	 4. Staff error 5. Plant Design 				 Trained and qualified operators – good housekeeping 						
							7. Security and vermin-proofing						
							8. Regular cleaning and maintenance of process equipment						
							1. Security and vermin-proofing						
		Biological contamination • Protozoa	 Cross contamination Vermin and bird access Staff error Plant Design 	Catastrophic	Rare	Medium (6)	 Trained and qualified operators – good housekeeping 			Medium (5)	Confident	Inability to detect contamination in the treatment process	
11	Treatment						Option: Raw and treated water monitoring program was reviewed to ensure its efficacy in providing sufficient data to provide confidence in the risk categorisations.	Major	Rare				UV Operational review
							Monto 2018-01 UV unit has been installed at the WTP						
		Chemical contamination	 Chemical overdose due to equipment failure Loss of Chemical supplies Communication Breakdown (alarms) Staff error 		Unlikely	Medium (6)	1. Chemical injection levels are tested once per day.				(3) Confident	Existing measures are robust.	
				Moderate			2. Dosing equipment is checked once per day.		Rare Lo				
							 Trained and qualified operators – good housekeeping 			Low (3)			
12	Treatment						Nousekeeping Monto 2018-02 On-line analysers are installed and	Moderate					
							alarmed to SCADA for this plant						
			5. Plant Design				Monto 2018-03 The operation of the chlorine injection system is linked to the high lift pumps						
			1. High raw water				 Degradation of sodium hypochlorite unlikely due to relatively small storage capacity which requires 					THM monitoring have	
13	Treatment	Disinfection by-	turbidity (dependent on nature of turbidity)	Major	Rare	Medium (5)	monthly refilling	Major	Rare	Medium (5)	Confident	commenced. All results are below ADWG limits.	
	-	products	2. Plant Design				 Staff aware of potential issues and refill fortnightly if possible 				-		
							Monto 2018-04: THM monitoring occurs monthly						
		Physical/chemical											
14	Treatment	contaminationTurbidity	1. Failure of Raw Water storage Reservoir integrity	Minor	Unlikely	Low (4)	1. Dilution during treatment processes and storage	Minor	Unlikely	Low (4)	Confident	Raw water reservoir roofs are asbestos.	
		 Turbidity Manganese Particulates 	storage reservoir integrity		- /		2. Reservoir management		- /			Existing measures are robust	
			1. Inadequate										
15	Treatment	Clearwater pump failure	maintenance 2. Lack of standby pumps 3. Power failure	Moderate	Unlikely	Medium (6)	 Estimated 1 day's supply in tower reservoir. There are two standby pumps installed 	Moderate	Rare	Low (3)	Confident	Existing measures are robust	

Page **143** of **323**

No.	Scheme Component	Hazard	Hazard Source		Maximum Risk		Existing Preventive Measures / Barriers. Residual risk Level of Uncertainty Comments		Residual risk		Comments	Possible and Proposed Further Risk Reduction Actions (Risk Management Improvement Plan Actions)	
				Consequence	Likelihood	Risk level		Consequence	Likelihood	Risk level			
16	All	Power failure causing contamination or supply failure	1. Power failure	Minor	Unlikely	Low (4)	1. Estimated one week's supply in reserve at clearwater and tower reservoir.	Minor	Rare	Low (3)	Confident	Existing measures and capacity are robust. Some incidents have occurred with no consequence.	Seek funding for disaster funding of generators

8.5 Monto Risk Management Measures

Table 8-7 Monto Existing and Proposed Preventative Measures

No.	Scheme Component	Hazard	Hazard Source	What are the existing preventative measures?	Do existing preventative measures impact on likelihood &/or consequence?	How effective is/are the existing preventative measure/s & on what basis has this been determined?	Residual risk after preventative measures	Is the level of residual risk acceptable	Proposed measures to reach an acceptable level or residual risk	Responsible Work Unit/ Organisation (& arrangements with external organisation if applicable)
1	Source water	Biological contamination • Protozoa	1. Livestock 2. Wildlife 3. Issues with Bore Infiltration 4. Septic systems/sewa ge 5. Recreation	 The bores are sealed and appropriately cased so storm runoff and infiltration are avoided, and vermin cannot enter. UV 	Likelihood	Moderately effective based on treatment plant results	Medium (6)	No	Sanitary survey to identify the potential risks and the source of the protozoa	Water and Wastewater
2	Source water	Biological contamination • Bacteria • Viruses	1. Livestock 2. Wildlife 3. Issues with Bore Infiltration 4. Septic Systems/sew age 5. Recreation	 The bores are completely enclosed and appropriately cased so storm runoff and infiltration is avoided and vermin cannot enter. Treatment processes – Chlorine disinfection 	Likelihood	Moderately effective based on treatment plant results	Medium (6)	Yes	Sanitary survey to identify the potential risks and the source	Water and Wastewater
3	Source water	Chemical contamination • Heavy metals	1. Natural heavy metals and other chemicals in water	 The bores are completely enclosed and appropriately cased so storm runoff and infiltration is avoided and vermin cannot enter. Treatment processes – Chlorine disinfection UV 	Likelihood	Unknown	Medium (5)	No		

No.	Scheme Component	Hazard	Hazard Source	What are the existing preventative measures?	Do existing preventative measures impact on likelihood &/or consequence?	How effective is/are the existing preventative measure/s & on what basis has this been determined?	Residual risk after preventative measures	Is the level of residual risk acceptable	Proposed measures to reach an acceptable level or residual risk	Responsible Work Unit/ Organisation (& arrangements with external organisation if applicable)
4	Source water	Chemical contamination • Nutrients: Nitrate Anions: Sulphate, Fluoride	 Pesticides and Fertilisers Natural occurrences of anions 	 The bores are completely enclosed and appropriately cased so storm runoff and infiltration is avoided and vermin cannot enter. Treatment processes – Chlorine disinfection 	Likelihood	Unknown	Low (4)	Yes		
5	Source water	Chemical contamination • General metals: Aluminium, Iron, Manganese, Boron, Copper	 Pesticides and Fertilisers Natural chemicals in water 	 The bores are completely enclosed and appropriately cased so storm runoff and infiltration is avoided and vermin cannot enter. Treatment processes – Chlorine disinfection 	Likelihood	Unknown	Low (3)	Yes		
6	Source water	Chemical contamination	Accidental spills	 Detection and dilution during treatment processes and storage Emergency response Public notification process (do not drink alert) 	Consequence	Unknown as has not occurred	Low (1)	Yes		
7	Source water	Physical contamination • Ash • Mud	 Soil erosion Flood waters (high turbidity and colour) Bush fires Major Storms 	 Public notification process (boil water alert) Detention time in reservoir for settling out particulates 	Likelihood	Effective in reducing turbidity as per water quality samples	Low (4)	Yes		
8	Source water	Lack of supply	1. Inadequate maintenance	 Two alternative sources of supply with individual pumps. Estimated 4-5 day's supply in raw water reservoirs. 	Likelihood	Effective- multiple backups and past history	Low (3)	Yes		

No.	Scheme Component	Hazard	Hazard Source	What are the existing preventative measures?	Do existing preventative measures impact on likelihood &/or consequence?	How effective is/are the existing preventative measure/s & on what basis has this been determined?	Residual risk after preventative measures	Is the level of residual risk acceptable	Proposed measures to reach an acceptable level or residual risk	Responsible Work Unit/ Organisation (& arrangements with external organisation if applicable)
			 2. Lack or failure of standby pumps 3. Power failure 							
9	Source water	Lack of supply	Climatic variations	 Importing water Drought management Plan actions: restrictions, communication etc. 	Likelihood	Effective- reliable supply	Low (2)	Yes		
10	Treatment	Biological contamination • Bacteria • Viruses	 Failure of chlorine injection Insufficient chlorine residual Loss of Chemical supplies Staff error Plant Design 	 Treatment processes – Chlorine disinfection post UV Chlorine levels are tested once per day at WTP. Chlorine residual tested at least weekly in reticulation system Injection pump and chlorine supply are also checked and inspected at the same time. Public notification process (boil water alert) Trained and qualified operators – good housekeeping Security and vermin-proofing Regular cleaning and maintenance of process equipment 	Likelihood	Moderately effective based on treated water test results	Medium	Yes	UV Operational review	Water and Wastewater
11	Treatment	Biological contamination • Protozoa	 Cross contamination Vermin and bird access 	 Security and vermin-proofing Trained and qualified operators – good housekeeping 	Likelihood	Inability to detect contamination in the	(5)	Yes	UV Operational review	Water and Wastewater

No.	Scheme Component	Hazard	Hazard Source	What are the existing preventative measures?	Do existing preventative measures impact on likelihood &/or consequence?	How effective is/are the existing preventative measure/s & on what basis has this been determined?	Residual risk after preventative measures	ls the level of residual risk acceptable	Proposed measures to reach an acceptable level or residual risk	Responsible Work Unit/ Organisation (& arrangements with external organisation if applicable)
			3. Staff error 4. Plant Design	Option: Raw and treated water monitoring program was reviewed to ensure its efficacy in providing sufficient data to provide confidence in the risk categorisations. Monto 2018-01 UV unit has been installed at the WTP		treatment process				
12	Treatment	Chemical contamination	 Chemical overdose due to equipment failure Loss of Chemical supplies Communication Breakdown (alarms) Staff error Plant Design 	 Chemical injection levels are tested once per day. Dosing equipment is checked once per day. Trained and qualified operators – good housekeeping Monto 2018-02 On-line analysers are installed and alarmed to SCADA for this plant Monto 2018-03 The operation of the chlorine injection system is linked to the high lift pumps 	Consequence	Effective based on treated water test results	Medium	Yes		
13	Treatment	Disinfection by- products	 High raw water turbidity (dependent on nature of turbidity) Plant Design 	 Degradation of sodium hypochlorite unlikely due to relatively small storage capacity which requires monthly refilling Staff aware of potential issues and refill fortnightly if possible Monto 2018-04: THM monitoring occurs monthly 	No	No THM exceedances recorded in treated water	(5)	Yes		

No.	Scheme Component	Hazard	Hazard Source	What are the existing preventative measures?	Do existing preventative measures impact on likelihood &/or consequence?	How effective is/are the existing preventative measure/s & on what basis has this been determined?	Residual risk after preventative measures	Is the level of residual risk acceptable	Proposed measures to reach an acceptable level or residual risk	Responsible Work Unit/ Organisation (& arrangements with external organisation if applicable)
14	Treatment	Physical/chemical contamination • Turbidity • Manganese • Particulates	1. Failure of Raw Water storage Reservoir integrity	 Dilution during treatment processes and storage Reservoir management 	Likelihood	Effective based on current water quality tests	Low (3)	Yes		
15	Treatment	Clearwater pump failure	 Inadequate maintenance Lack of standby pumps Power failure 	 Estimated 1 day's supply in tower reservoir. There are two standby pumps installed 	Likelihood and consequence	Effective- multiple backups	Medium (5)	Yes		
16	All	Power failure causing contamination or supply failure	1. Inappropriate chemical storage or defective batch	 Estimated one week's supply in reserve at clearwater and tower reservoir. 	Consequence	Moderately effective- based on treatment results	Low (4)	Yes	Seek disaster funding of generators	Major Projects Water and Wastewater

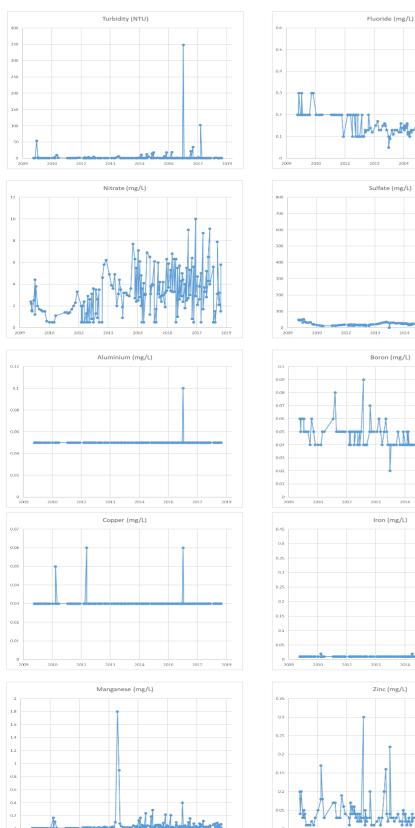

8.6 Monto Risk Management Improvement Program

Table 8-8 Monto Risk Improvement Program

Risk	Scheme Component /				Risk Improvement Act	ions			
No.	Sub-component	Hazard/ Hazardous event	Priority	interim	short-term	long-term	Target dates	Estimated cost	Responsibility
1	Source	Biological contamination Protozoa 	Medium			Investigate the impact of the Piggeries staged expansion on source water quality.	Ongoing	\$20k	Water and Wastewater Environment and Planning
3	Source	Biological contamination Bacteria Viruses 	Medium			Investigate the impact of the Piggeries staged expansion on source water quality.	Ongoing	\$20k	Water and Wastewater Environment and Planning
10	Treatment	Biological contamination Bacteria Viruses	Medium		UV Operational review		30/06/2022	\$20k	Water and Wastewater
11	Treatment	Biological contamination Protozoa	Medium		UV Operational review		30/06/2022	\$20k	Water and Wastewater
16	All	Power failure causing contamination or supply failure	Low			Seek disaster funding of generators	30/06/2025	\$50k	Major Projects Water and Wastewater

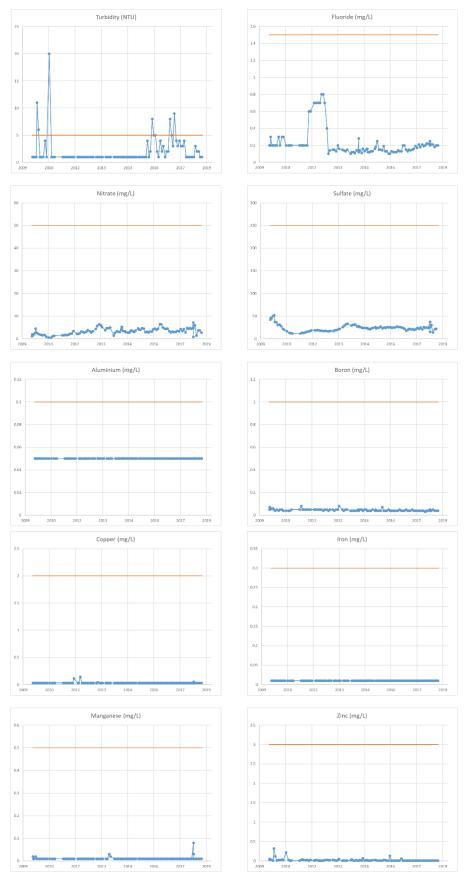
8.7 Monto Water Scheme Water Quality Data

The results are spread across the twelve month period of the year indicated. Note the orange lines indicate the ADWG limits.

Monto untreated bore water 2010-2018

2013

2017


يلو كاني

2017

2016

2014

λ NT 11

Monto treated water 2010-2018

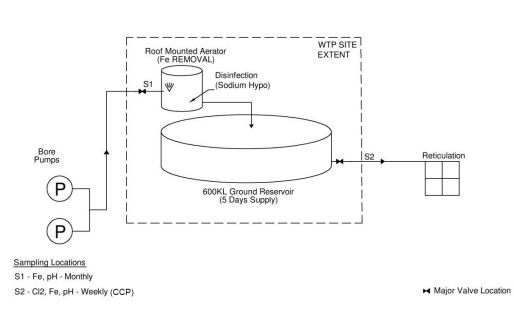
9. MOUNT PERRY WATER SUPPLY SCHEME

9.1 Details of Infrastructure for Providing the Service

Source Water

Mount Perry is supplied from two ground water sources. Wolca Bore is located 7.5km north east of Mount Perry and can supply 3.0L/s. Drummers Creek Bore is located 7km north east of Mount Perry and can supply 3.0L/s.

Bore water is pumped 5.75 km through a 100mm PVC line to the 590 kL ground level storage reservoir located on the road to Normanby Range lookout on the northern outskirts of the town.


Treatment Process

Aeration and disinfection are carried out before the ground level storage reservoir.

The Mount Perry WTP is automatic in operation with twice weekly inspections carried out by operators.

Disinfection is achieved through liquid sodium hypochlorite injection at automated dosing points. The WTP pumps and reservoir levels are linked to the SCADA system. If problems at these WTP elements are detected through SCADA (i.e. failure of chlorine dosing or reservoir levels) an alarm is triggered and an SMS is sent to the operator's phone, who will then visit the site.

Chlorine injection at the WTP is also linked to the SCADA system. In-line chlorine and turbidity analyser assist in failure detection. There is a 200 L chlorine storage tank at the WTP, the level of which is reviewed weekly by operators. There is no documented WTP operation manual.

MT. PERRY

Figure 9-1 Mount Perry WTP Schematic

Distribution

Following treatment and storage, water is gravity fed from the ground reservoir to the town's reticulation system.

Sampling locations are sited at key points determined to provide the best indication of chlorine residual levels in the system. Samples are also taken as water leaves the reservoir. Chlorine residuals in the network are sampled and tested on-site regularly. Raw and treated water samples are sent once a month to the Queensland Health Laboratory for chemical analysis. Raw and treated water samples are sent to the Qld Health Laboratory for biological testing.

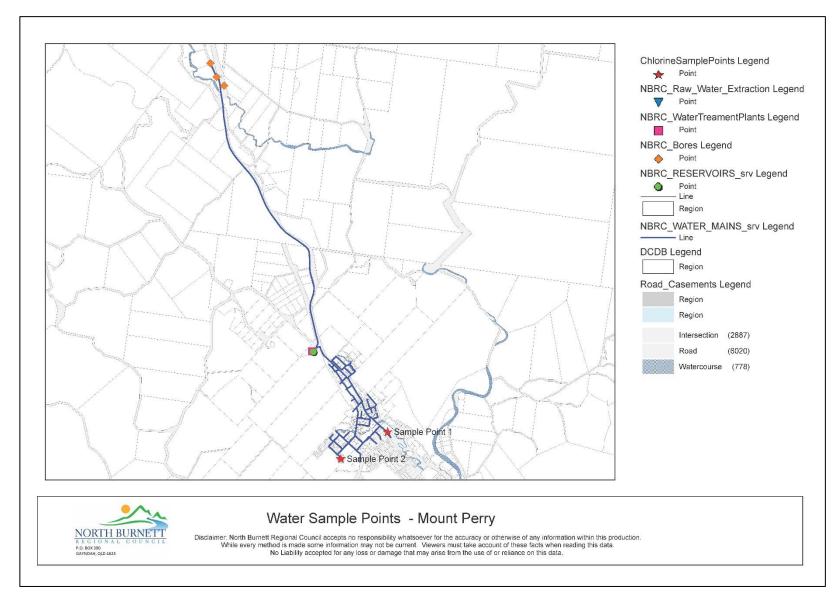


Figure 9-2 Mount Perry Water Supply Map

Drinking Water Quality Management Plan

Revision 7

Page **156** of **316**

Table 9-1 Infrastructure Details – Mount Perry	Water Supply Scheme
--	---------------------

	Component	Scheme		
	Name	Bore Field		
	Туре	Sub-Artesian Bore x 2		
	% of supply	100%		
	Reliability	High		
	Water quality issues	High iron content		
Sources		Drummers Creek Bore – 3L/s		
	Name	Wolca Bore – 3 L/s		
	Туре	Bore		
	% of supply	100%		
	Reliability	100%		
	Туре	Pumped bore		
		Pump Capacity = 4.0L/s @		
		Bore Pumps		
	Drummers Creek Bore	Installed = 2000		
		Casing = Steel		
		Diameter = DN250		
Sourcing Infrastructure		Depth = 25m		
		Pump Capacity = 4.0L/s @ 75m		
		Bore Pumps		
	Wolca Creek Bore	Installed = 2000		
	Wold Creek bore	Casing = Steel		
		Diameter = DN250		
		Depth = 25m		

Drinking Water Quality Management Plan

	Component	Scheme
	Ownership	NBRC
Are there any sources that do not undergo treatment prior to supply?	No	
	Name	Mount Perry WTP
	Process	Aeration, Chlorination
	Design Capacity (20 hr operation)	216 kL/d
	Daily flow range	60-80 kL/d
	Chemicals added	Sodium Hypochlorite
Mount Perry WTP	Standby chemical dosing facilities (Y/N)	N
	Water sourced from and %	Bores 100%
	% of average day demand provided	100%
	% of scheme supply Distribution area supplied	100%
	Bypasses / Variations	Yes
	Location	Reservoir
	Туре	Liquid sodium hypochlorite via Dosing Pump
	Dose rate	Controlled by in-line analyser
Disinfection	Target residual levels	0.5 mg/L
Disinfection	Duty/standby	No
	Dosing arrangements	Fixed
	Alarms	Nil
	Auto shut-off arrangements	Nil

	Component	Scheme
	Pipe material	PVC
	Age range	15-20 years
Distribution and	Approx. % of total length	100%
Reticulation System	Areas where potential long detention periods could be expected	Nil
	Areas where low water pressure (e.g. < 12 m) could be expected during peak or other demand periods)	Nil
	Ground	1
	Name	Ground Reservoir
	Capacity (ML)	590kL
Reservoir	Roofed (Y/N)	Y
	Vermin-proof (Y/N)	Y
	Runoff directed off roof (Y/N)	Y

9.2 Mount Perry Water Quality: Identifying Hazard and Hazardous Events

Water quality information has been collected by NBRC for raw water, treated water and reticulated supply for the period of February 2010 to November 2018. Analysis of this data has been completed to assess the results in comparison to the Australian Drinking Water Guidelines guideline values for parameters measured.

A summary of the water analysis undertaken for the Mount Perry Water Supply Scheme is contained in Table 9-2, Table 9-3, Table 9-4 and Table 9-5. Section 9.7 includes graphs of sampling data.

For raw water and treated water the following parameters have been measured monthly:

- Conductivity
- pH
- Total & temporary hardness
- Alkalinity (including residual)
- Silica
- Total dissolved ions
- Total dissolved solids
- True colour
- Turbidity
- Saturation index
- Mole ratio
- Sodium absorption ratio

- Figure of merit ratio
- Cations (sodium, potassium, calcium, magnesium, and hydrogen)
- Anions (bicarbonate, carbonate, hydroxide, chloride, fluoride, nitrate, sulphate)
- Dissolved metals (iron, manganese, zinc, boron, copper, aluminium)
- Total metals (aluminium, arsenic, cadmium, chromium, copper, iron, lead, manganese, nickel, zinc)
- THM

The reticulated water scheme has been measured for pH, residual chlorine, *E. coli* and total coliforms.

Interpretation

In recent history, over the period of testing, sampling as occurred approximately once per month to meet the requirements for Qld. Health tests at Mount Perry.

Sampling and testing in the reticulated system was conducted approximately twice a month for disinfectant residual and total coliform, but more frequently for *E. coli* and pH.

The raw water sampling indicated that turbidity and manganese were above drinking water guideline values, but all other parameters were below the guideline values.

For sampling data taken from the Mount Perry WTP, there are no instances where values exceeded the guideline value.

Within the reticulation system, four residual chlorine samples were below the ADWG recommended values. There were potential water quality issues within the reticulation system due to low levels of residual chlorine and total coliforms being detected. Increased frequency of sampling and testing, and operational response, has since reduced this risk.

Table 9-2 Mount Perry Raw Water Source

				Mount Perry So	urce – Bores		
Parameter (mg/L unless	Sampling		No of		Summary of Results		
otherwise specified)	location	Time Period	samples	Maximum Value	Average Value	Minimum Value	Comments
Turbidity (NTU)	Reservoir (in)	Feb 2010 – Nov 2018	96	46	2.2	<1.0	
Fluoride	Reservoir (in)	Feb 2010 – Nov 2018	96	0.4	0.28	0.15	
Nitrate	Reservoir (in)	Feb 2010 – Nov 2018	96	1.80	0.57	<0.05	Multiple limits of detection were used (<0.05 and <0.5). In order to calculate the stats, the absolute values were used.
Sulfate	Reservoir (in)	Feb 2010 – Nov 2018	96	14.2	9.9	5.6	
Dissolved metals							
Aluminium	Reservoir (in)	Feb 2010 – Nov 2018	96	<0.05	<0.05	<0.05	All values below level of detection
Boron	Reservoir (in)	Feb 2010 – Nov 2018	96	0.06	0.03	<0.02	
Copper	Reservoir (in)	Feb 2010 – Nov 2018	96	0.14	0.03	<0.03	
Iron	Reservoir (in)	Feb 2010 – Nov 2018	96	0.04	0.01	<0.01	
Manganese	Reservoir (in)	Feb 2010 – Nov 2018	96	0.14	0.02	<0.01	
Zinc	Reservoir (in)	Feb 2010 – Nov 2018	96	0.51	0.03	<0.01	
Total metals							
Aluminium	Drummers Creek Bore	Nov 2017 – Oct 2018	2	0.07	0.05	0.03	
Arsenic	Drummers Creek Bore	Nov 2017 – Oct 2018	2	0.0025	0.002	0.0015	
Cadmium	Drummers Creek Bore	Nov 2017 – Oct 2018	2	<0.0001	<0.0001	<0.0001	All samples were <0.0001 mg/L

Drinking Water Quality Management Plan

Mount Perry Source – Bores												
Parameter (mg/L unless	Sampling		No of		Summary of Results							
otherwise specified)	location	Time Period	Period samples Average Min Maximum Value Value Value		Minimum Value	Comments						
Chromium	Drummers Creek Bore	Nov 2017 – Oct 2018	2	0.0025	0.0013	<0.0001						
Copper	Drummers Creek Bore	Nov 2017 – Oct 2018	2	0.001	0.001	<0.001						
Iron	Drummers Creek Bore	Nov 2017 – Oct 2018	2	1	0.521	0.042						
Lead	Drummers Creek Bore	Nov 2017 – Oct 2018	2	0.0007	0.0005	0.0003						
Manganese	Drummers Creek Bore	Nov 2017 – Oct 2018	2	0.29	0.17	0.047						
Nickel	Drummers Creek Bore	Nov 2017 – Oct 2018	2	0.0046	0.0026	0.0007						
Zinc	Drummers Creek Bore	Nov 2017 – Oct 2018	2	0.004	0.003	0.002						

Table 9-3 Mount Perry Treated Water

Plant					Mount P	erry WTP			
				Su	ummary of re	sults	Australian Drinking	No of samples	
Parameter (mg/L unless otherwise specified)	Sampling location(s)	Time Period	No of samples taken in time period	Maximum Value	Average Value	Minimum Value	Water Guidelines guideline value for health unless otherwise specified	exceeding Australian Drinking Water Guidelines guideline value	Comment
Turbidity (NTU)	WTP	Feb 2010 – Nov 2018	96	2.0	1.03	<1.0	5	0	Aesthetic guideline only
Fluoride	WTP	Feb 2010 – Nov 2018	96	0.40	0.27	0.18	1.5	0	
Nitrate	WTP	Feb 2010 – Nov 2018	96	2.00	0.59	0.50	50	0	Aesthetic guideline only
Sulfate	WTP	Feb 2010 – Nov 2018	96	14.30	9.85	6.10	250	0	Aesthetic guideline only
Dissolved metals									
Aluminium	WTP	Feb 2010 – Nov 2018	96	0.06	0.05	0.05	0.1	0	Although 0.2mg/L is the aesthetic guideline value, <0.1 mg/L is desirable
Boron	WTP	Feb 2010 – Nov 2018	96	0.2	0.03	<0.02	1	0	Although 4mg/L is the health guideline value, concentrations in uncontaminated sources is usually <1 mg/L
									Multiple limits of detection were used (<0.0 and <0.2). In order to calculate the stats, the absolute values were used.
Copper	WTP	Feb 2010 – Nov 2018	96	0.22	0.05	<0.03	2 (1)	0	Number in brackets denotes the aesthetic guideline value
Iron	WTP	Feb 2010 – Nov 2018	96	0.02	0.01	<0.01	0.3	0	Aesthetic guideline only

Plant		Mount Perry WTP												
Parameter				Summary of results			Australian Drinking	No of samples exceeding						
Parameter (mg/L unless otherwise specified)	Sampling location(s)	Time Period	No of samples taken in time period	nples Maximum Average Minimum guideline n in time Value Value Value health		guideline value for health unless otherwise specified guideline value		Comment						
Manganese	WTP	Feb 2010 – Nov 2018	96	0.02	0.01	<0.01	0.5 (0.1)	0	Number in brackets denotes the aesthetic guideline value					
Zinc	WTP	Feb 2010 – Nov 2018	96	0.54	0.04	<0.01	3	0						

Table 9-4 Mount Perry Reticulated Water

Scheme Sampling Location	-	Mount Perry Reticulated Water											
Parameter (mg/L unless	Time Period	No of samples		Summary of Resu	lts	Australian Drinking Water Guidelines guideline value for	No of samples exceeding Australian	Comment					
otherwise specified)			Maximum Value	Average Value	Minimum Value	health unless otherwise specified)	Drinking Water Guidelines guideline value						
pH (pH units)	Feb 2010 – Nov 2018	96	8.1	7.6	7.3	6.5 - 8.5	0	Aesthetic guideline only					
Disinfectant residual	July 2016 – Nov 2018	75	1.86	1.01	0	>0.2 - 0.5	4	Guideline value is from the World Health Organization's Guidelines for Drinking-water Quality 4 th edition Chlorine residual <0.2 occurred in Nov 2017 and Jan 2018					

Scheme	-				Mount Perry Re	ticulated Water		
Sampling Location Parameter (mg/L unless otherwise	Time Period	No of samples		Summary of Resu	ults	Australian Drinking Water Guidelines guideline value for	No of samples exceeding Australian	Comment
specified)			Maximum Value	Average Value	Minimum Value	health unless otherwise specified)	Drinking Water Guidelines guideline value	
Total coliform (mpn/100mL)	July 2016 – Nov 2018	75	0	0	0	NA	NA	
<i>E. coli</i> (CFU/100mL)	July 2016 – Nov 2018	75	0	0	0	None Detected	0	
Total metals								
Aluminium	Nov 2017 – Oct 2018	3	0.03	0.021	<0.003	0.2	0	Aesthetic guideline only
Arsenic	Nov 2017 – Oct 2018	3	0.0015	0.0014	0.0014	0.01	0	
Cadmium	Nov 2017 – Oct 2018	3	<0.0001	<0.0001	<0.0001	0.002	0	All samples were <0.0001 mg/L
Chromium	Nov 2017 – Oct 2018	3	<0.0001	<0.0001	<0.0001	0.05	0	All samples were <0.0001 mg/L
Copper	Nov 2017 – Oct 2018	3	0.016	0.012	0.007	2 (1)	0	Number in brackets denotes the aesthetic guideline value
Iron	Nov 2017 – Oct 2018	3	0.13	0.056	0.017	0.3	0	Aesthetic guideline only
Lead	Nov 2017 – Oct 2018	3	0.0022	0.0009	0.0003	0.01	0	
Manganese	Nov 2017 – Oct 2018	3	0.14	0.05	0.0047	0.5 (0.1)	1	Number in brackets denotes the aesthetic guideline value
								Exceedance in November 2017

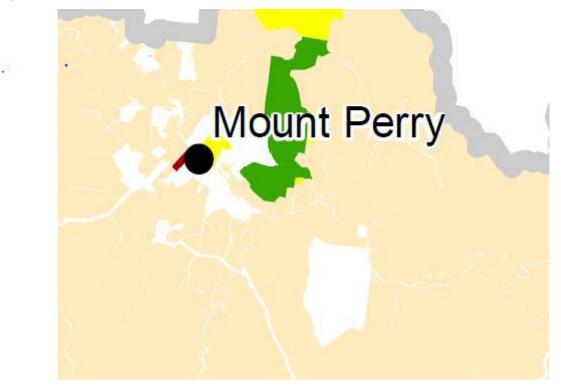

Scheme Sampling Location	_	Mount Perry Reticulated Water											
Parameter (mg/L unless	Time Period	No of samples		Summary of Resu	lts	Australian Drinking Water Guidelines guideline value for	No of samples exceeding Australian	Comment					
otherwise specified)			Maximum Value	Average Value	Minimum Value	health unless otherwise specified)	Drinking Water Guidelines guideline value						
Nickel	Nov 2017 – Oct 2018	3	0.0023	0.0012	0.0006	0.02	0						
Zinc	Nov 2017 – Oct 2018	3	0.01	0.008	0.005	3	0	Aesthetic guideline only					
Trihalomethanes	Sept 2016 – Oct 2018	3	0.015	0.011	0.009	0.25	0						

Table 9-5 Mount Perry Water Quality Complaints

Year	No of Water Quality Complaints	Water Quality Complaints per 1000 Connections	Main Reasons for Complaints	Likely Sources / Causes of Problems	Resolution of Problem
1-7-2010 to 26-10-2018	0	0	-	-	-

9.3 Mount Perry Catchment Characteristics

The general terrain around the township of Mount Perry is hilly to mountainous. Most of the district is unimproved grazing land. Gold mining occurs on the south eastern outskirts of Town. Influence of this activity on the town water source is non-detectable. The bores are fully enclosed, housed and inside a locked perimeter fence. There are no known potential influences that would affect the water quality.

Legend **Primary Landuse** Cattle Breeding, Fattening & Grazing Cropping - Grain, Peanuts Dairy Extractive Industry Forestry - Logs Intensive Animal Production - Goats, Pigs Noxious/Offensive Industry - inc Abbatoir Orchards Reservoir, Dams Small Crops - Fodder Vacant Rural Land State Forest National Park Towns Highways/Major Roads Rivers North Burnett Local Government Boundary

Figure 9-3 Mount Perry Catchment Area

9.4 Mount Perry Hazard Identification, Risk Assessment and Uncertainty

		,				Maximum Risk				Residual risk				Possible and
1	lo.	Scheme Component	Hazard	Hazard Source	Consequence	Likelihood	Risk level	Existing Preventive Measures / Barriers.	Consequence	Likelihood	Risk level	Level of Uncertainty	Comments	Proposed Further Risk Reduction Actions (Risk Management Improvement Plan Actions)
1		Source water	Biological contamination • Protozoa	 Livestock Wildlife Issues with Bore Infiltration Septic systems/sewage Recreation 	Catastrophic	Unlikely	High (10)	 The bores are sealed and appropriately cased so storm runoff and infiltration is avoided and vermin cannot enter. Raw and treated water monitoring program was reviewed 	Catastrophic	Rare	Medium (6)	Confident	Inability to detect contamination	Apply for funding for UV Disinfection
2		Source water	Biological contamination • Bacteria • Viruses	 Livestock Wildlife Issues with Bore Infiltration Septic Systems/sewage Recreation 	Catastrophic	Unlikely	High (10)	 The bores are sealed and appropriately cased so storm runoff and infiltration is avoided and vermin cannot enter. Treatment processes – Chlorine disinfection Raw and treated water monitoring program was reviewed 	Catastrophic	Rare	Medium (6)	Confident	Existing measures are robust	Apply for funding for UV Disinfection
3		Source water	Chemical contamination • Heavy metals	 Natural heavy metals and other chemicals in water 	Major	Unlikely	Medium (8)	 Dilution during treatment processes and storage Treatment processes - aerator for iron removal Annual monitoring and testing of source water. 	Major	Rare	Medium (5)	Confident	Main concern is arsenic level in raw water which is still below unsafe levels.	
4		Source water	Chemical contamination • Nutrients: Nitrate • Anions: Sulphate, Fluoride	 Pesticides and Fertilisers Natural occurrences of anions 	Minor	Possible	Medium (6)	 Dilution during treatment processes and storage Treatment processes - aerator for iron removal Regular testing program 	Minor	Unlikely	Low (4)	Confident	Few farmers use either pesticides or fertiliser as the area is predominantly grazing.	
5		Source water	Chemical contamination • General metals: Aluminium, Iron, Manganese, Boron, Copper	 Pesticides and Fertilisers Natural chemicals in water 	Moderate	Unlikely	Medium (6)	 Dilution during treatment processes and storage Treatment processes - aerator for iron removal Regular testing program 	Moderate	Rare	Low (3)	Confident	Few farmers use either pesticides or fertiliser as the area is predominantly grazing.	
6		Source water	Chemical contamination	1. Accidental spills	Moderate	Rare	Low (3)	 Detection and dilution during treatment processes and storage Emergency response Public notification process (do not drink alert) Regular testing program 	Insignificant	Rare	Low (1)	Uncertain	Small concentration. Only risk of any real consequence would be a chemical spill near the intake Inability to predict type or consistency of possible spill?	
7		Source water	Physical contamination • Ash • Mud	 Soil erosion Flood waters (high turbidity and colour) Bush fires Major Storms 	Minor	Unlikely	Low (4)	 Detention time in storage for settling out particulates Public notification process (boil water alert) 	Minor	Unlikely	Low (4)	Confident	Existing measures are robust	

 Table 9-6 Mount Perry Hazard Identification, Risk Assessment and Uncertainty

				· ·	Maximum Risk				Residual risk				Possible and
No.	Scheme Component	Hazard	Hazard Source	Consequence	Likelihood	Risk level	Existing Preventive Measures / Barriers.	Consequence	Likelihood	Risk level	Level of Uncertainty	Comments	Proposed Further Risk Reduction Actions (Risk Management Improvement Plan Actions)
8	Source water	Lack of supply	 Inadequate maintenance Lack or failure of standby pumps Power failure 	Moderate	Unlikely	Medium (6)	 Two alternative sources of supply with individual pumps. Estimated 4-5 days supply in reservoir Spare pump kept at local depot 	Moderate	Rare	Low (3)	Confident	Existing measures are robust	
9	Source water	Lack of supply	Climatic variations	Moderate	Unlikely	Medium (6)	 Importing water Drought Management Plan actions: restrictions, communication etc. 	Moderate	Rare	Low (2)	Uncertain	Uncertainty in future climate	
10	Treatment	Biological contamination • Bacteria • Viruses	 Failure of chlorine injection Insufficient chlorine residual Loss of Chemical supplies Staff error Plant Design 	Major	Possible	High (12)	 Treatment processes – Chlorine disinfection Injection pump and chlorine supply are also checked and inspected twice weekly. Public notification process (boil water alert) Trained and qualified operators – good housekeeping Security and vermin-proofing Regular cleaning and maintenance of process equipment SCADA monitoring and alarming Mount Perry 2018-01: Operation of the chlorine injection system is linked to raw water meter signal in 2015. Mount Perry 2013-02: On-line chlorine analyser is installed and alarmed to SCADA Mount Perry 2013-03: Chlorine levels in retic system are tested at least weekly. 	Major	Rare	Medium (5)	Reliable	SCADA has been upgraded to provide better monitoring and alarming	Seek funding to install UV
11	Treatment	Biological Contamination • Protozoa	 Cross contamination Vermin and bird access Staff error Plant Design 	Catastrophic	Rare	Medium (6)	 Security and vermin-proofing Trained and qualified operators – good housekeeping Raw and treated water monitoring program was reviewed to ensure its efficacy in providing sufficient data to provide confidence in the risk 	Catastrophic	Rare	Medium (6)	Uncertain	Inability to detect contamination in the treatment process	Seek funding to install UV
12	Treatment	Chemical contamination	 Chemical overdose due to equipment failure Loss of Chemical supplies Communication Breakdown (alarms) Staff error Plant Design 	Moderate	Unlikely	Medium (6)	 Chemical injection levels are inspected twice per week. Dosing equipment is checked twice per week. Trained and qualified operators – good housekeeping On line analyser installed and alarmed to SCADA Mount Perry 2018-01: Operation of the chlorine injection system is linked to raw water meter signal in 2015. 	Moderate	Rare	Low (3)	Confident	Existing measures are robust.	
14	Treatment	Physical/chemical contamination • Turbidity • Manganese Particulates	Failure of aeration sprayers	Minor	Rare	Low (2)	 Dilution during treatment processes and storage Aerator checked weekly 	Minor	Rare	Low (2)	Confident	Existing measures are robust	

Page **169** of **323**

9.5 Mount Perry Risk Management Measures

Table 9-7 Mount Perry Existing and Proposed Preventative Measures

No.	Scheme Component	Hazard	Hazard Source	What are the existing preventative measures?	Do existing preventative measures impact on likelihood &/or consequence?	How effective is/are the existing preventative measure/s & on what basis has this been determined?	Residual risk after preventative measures	Is the level of residual risk acceptable	Proposed measures to reach an acceptable level or residual risk	Responsible Work Unit/ Organisation (& arrangements with external organisation if applicable)
1	Source water	Biological contamination • Protozoa	 Livestock Wildlife Issues with Bore Infiltration Septic systems/sewag Recreation 	 The bores are sealed and appropriately cased so storm runoff and infiltration is avoided and vermin cannot enter. Raw and treated water monitoring program was reviewed 	Likelihood	Effective based on water test results	Medium (6)	Yes	Apply for funding for UV Disinfection	Major Projects Water and Wastewater
2	Source water	Biological contamination • Bacteria • Viruses	 Livestock Wildlife Issues with Bore Infiltration Septic Systems/sewag Recreation 	 The bores are sealed and appropriately cased so storm runoff and infiltration is avoided and vermin cannot enter. Treatment processes – Chlorine disinfection Raw and treated water monitoring program was reviewed 	Likelihood	Effective based on water test results	Medium (6)	Yes	Apply for funding for UV Disinfection	Major Projects Water and Wastewater
3	Source water	Chemical contamination • Heavy metals	1. Natural heavy metals and other chemicals in water	 Dilution during treatment processes and storage Treatment processes - aerator for iron removal Annual monitoring and testing of source water. 	Likelihood	Unknown	Medium (5)	No		
4	Source water	Chemical contamination	1. Pesticides and Fertilisers	 Dilution during treatment processes and storage 	Likelihood	Unknown	Low (4)	Yes		

Drinking Water Quality Management Plan

No.	Scheme Component	Hazard	Hazard Source	What are the existing preventative measures?	Do existing preventative measures impact on likelihood &/or consequence?	How effective is/are the existing preventative measure/s & on what basis has this been determined?	Residual risk after preventative measures	ls the level of residual risk acceptable	Proposed measures to reach an acceptable level or residual risk	Responsible Work Unit/ Organisation (& arrangements with external organisation if applicable)
		 Nutrients: Nitrate Anions: Sulphate, Fluoride 	2. Natural occurrences of anions	2. Treatment processes - aerator for iron removal Regular testing program						
5	Source water	Chemical contamination • General metals: Aluminium, Iron, Manganese, Boron, Copper	 Pesticides and Fertilisers Natural chemicals in water 	 Dilution during treatment processes and storage Treatment processes - aerator for iron removal Regular testing program 	Likelihood	Unknown	Low (3)	Yes		
6	Source water	Chemical contamination	1. Accidental spills	 Detection and dilution during treatment processes and storage Emergency response Public notification process (do not drink alert) Regular testing program 	Consequence	Unknown as has not occurred	Low (1)	Yes		
7	Source water	Physical contamination • Ash • Mud	 Soil erosion Flood waters (high turbidity and colour) Bush fires Major Storms 	 Detention time in storage for settling out particulates Public notification process (boil water alert) 	Likelihood	Effective in reducing turbidity as per water quality samples	Low (4)	Yes		
8	Source water	Lack of supply	 Inadequate maintenance Lack or failure of standby pumps 	1. Two alternative sources of supply with individual pumps.	Likelihood	Effective- multiple backups and past history	Low (3)	Yes		

No.	Scheme Component	Hazard	Hazard Source	What are the existing preventative measures?	Do existing preventative measures impact on likelihood &/or consequence?	How effective is/are the existing preventative measure/s & on what basis has this been determined?	Residual risk after preventative measures	ls the level of residual risk acceptable	Proposed measures to reach an acceptable level or residual risk	Responsible Work Unit/ Organisation (& arrangements with external organisation if applicable)
			3. Power failure	2. Estimated 4-5 days supply in reservoir						
				3. Spare pump kept at local depot						
9	Source water	Lack of supply	Climatic variations	 Importing water Drought Management Plan actions: restrictions, communication etc. 	Likelihood	Effective- reliable supply	Low (2)	Yes		
10	Treatment	Biological contamination • Bacteria • Viruses	 Failure of chlorine injection Insufficient chlorine residual Loss of Chemical supplies Staff error Plant Design 	 Treatment processes – Chlorine disinfection Injection pump and chlorine supply are also checked and inspected twice weekly. Public notification process (boil water alert) Trained and qualified operators – good housekeeping Security and vermin- proofing Regular cleaning and maintenance of process equipment SCADA monitoring and alarming Mount Perry 2018-01: Operation of the chlorine injection system is linked to raw water meter signal in 2015. 	Likelihood	Not effective. Monitoring is inadequate	Medium (5)	No	Seek funding to install UV	Major Projects Water and Wastewater

No.	Scheme Component	Hazard	Hazard Source	What are the existing preventative measures?	Do existing preventative measures impact on likelihood &/or consequence?	How effective is/are the existing preventative measure/s & on what basis has this been determined?	Residual risk after preventative measures	ls the level of residual risk acceptable	Proposed measures to reach an acceptable level or residual risk	Responsible Work Unit/ Organisation (& arrangements with external organisation if applicable)
				Mount Perry 2013-02: On- line chlorine analyser is installed and alarmed to SCADA Mount Perry 2013-03: Chlorine levels in retic system are tested at least weekly.						
11	Treatment	Biological contamination • Protozoa	 Cross contamination Vermin and bird access Staff error Plant Design 	 Security and vermin- proofing Trained and qualified operators – good housekeeping Raw and treated water monitoring program was reviewed to ensure its efficacy in providing sufficient data to provide confidence in the risk 	No	Inability to detect contamination in the treatment process	Medium (6)	No	Seek funding to install UV	Major Projects Water and Wastewater
12	Treatment	Chemical contamination	 Chemical overdose due to equipment failure Loss of Chemical supplies Communication Breakdown (alarms) Staff error Plant Design 	 Chemical injection levels are inspected twice per week. Dosing equipment is checked twice per week. Trained and qualified operators – good housekeeping 	Likelihood	Effective based on water test results	Low (3)	Yes		

No.	Scheme Component	Hazard	Hazard Source	What are the existing preventative measures?	Do existing preventative measures impact on likelihood &/or consequence?	How effective is/are the existing preventative measure/s & on what basis has this been determined?	Residual risk after preventative measures	ls the level of residual risk acceptable	Proposed measures to reach an acceptable level or residual risk	Responsible Work Unit/ Organisation (& arrangements with external organisation if applicable)
				On line analyser installed and alarmed to SCADA Mount Perry 2018-01: Operation of the chlorine injection system is linked to raw water meter signal in 2015.						
13	Treatment	Disinfection by- products	 High raw water turbidity (dependent on nature of turbidity) Plant Design 	 Dilution during treatment processes and storage Aerator checked weekly 	No	No THM exceedances recorded in treated water	Medium (5)	Yes		
14	Treatment	Physical/chemical contamination • Turbidity • Manganese • Particulates	Failure of aeration sprayers	 The bores are sealed and appropriately cased so storm runoff and infiltration is avoided and vermin cannot enter. Raw and treated water monitoring program was reviewed 	Likelihood	Effective	Low (2)	Yes		

9.6 Mount Perry Risk Management Improvement Program

Table 9-8 Mount Perry Risk Improvement Program

Risk No.	Scheme Component / Sub- component	Hazard/ Hazardous event	Priority		Risk Im	provement Actions		Estimated cost	Responsibility
				interim	short-term	long-term	Target dates		
1	Source water	Biological contamination • Protozoa	Medium			Apply for funding for UV Disinfection	30/06/2024	\$100k	Major Projects Water and Wastewater
2	Source water	Biological contamination • Bacteria Viruses	Medium			Apply for funding for UV Disinfection	30/06/2024	\$100k	Major Projects Water and Wastewater
10	Treatment	Biological contamination • Bacteria Viruses	Medium			Apply for funding for UV Disinfection	30/06/2024	\$100k	Major Projects Water and Wastewater
11	Treatment	Biological contamination • Protozoa	Medium			Apply for funding for UV Disinfection	30/06/2024	\$100k	Major Projects Water and Wastewater

9.7 Mount Perry Water Scheme Water Quality Data

The results are spread across the twelve-month period of the year indicated. Note the orange lines indicate the ADWG limits.

Mount Perry untreated bore water 2010-2018

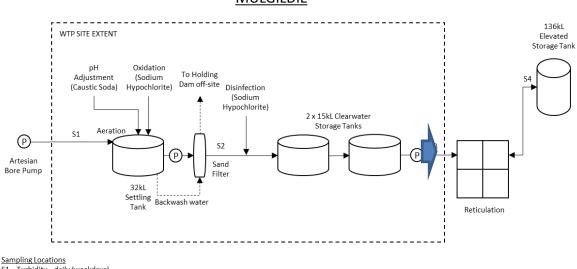
Mount Perry treated water 2010-2018

Revision 7.1

10. MULGILDIE WATER SUPPLY SCHEME

10.1 **Details of Infrastructure for Providing the Service**

Source Water


Raw water for the scheme is drawn from a single artesian bore located on the western edge of town, adjacent to Hughes Street. The water is now pumped from the bore, as the natural artesian flow rate has dropped to a point where it would not sustain the town water demand. The pump is set 20m from the Bore head and pumps at 2.5L/s. The supply is drawn from the Great Artesian Basin.

Treatment Process

In 1990, a treatment plant was constructed next to the bore site to improve the quality of the raw water which had failed to comply with NHMRC guidelines with respect to excessive hardness and salinity (total dissolved solids) and high concentration of iron. The treatment facility consists of chemical feeding, aeration, sedimentation, rapid filtration, UV, clearwater storage (Balance Tanks) and chlorination. The treatment plant was upgraded in 2005 to provide additional clearwater storage and a variable speed clearwater pump. Overflow and backwash water can discharge to a holding dam some distance from the treatment plant and dissipate back into the ground by soakage under an EPA licence. In 2016, the original aeration/cooling tower was removed, and aeration sprays set up in the sedimentation tank. Also, the existing filter was removed, and a new Glacier Filtration unit installed and U.V installed

The Mulgildie WTP is automatic in operation with daily inspections carried out by operators.

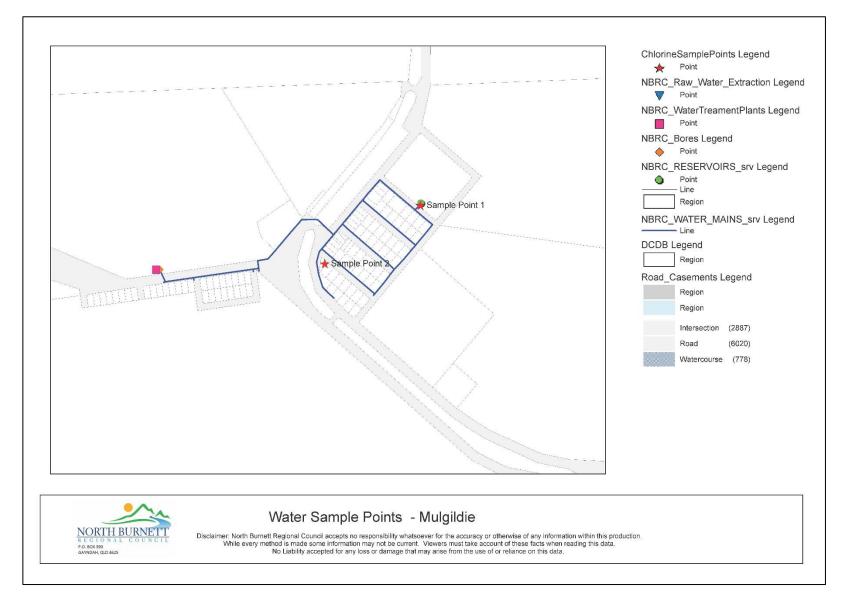
Disinfection is achieved through sodium hypochlorite injection at automated dosing points. The WTP pumps and reservoir levels are linked to the SCADA system. If problems at these WTP elements are detected through SCADA (i.e. failure of chlorine dosing or reservoir levels) an alarm is triggered and an SMS is sent to the operator's phone, who will then visit the site. Chlorine injection at the WTP is also linked to the SCADA system, and pH and chlorine analysers are installed and alarmed. There is a 200 L chlorine storage tank at the WTP, the level of which is monitored daily by operators. There is no documented WTP operation manual.

MULGILDIE

S1 – Turbidity – daily (weekdays) S2 – Turbidity – daily (weekdays) (CCP)

S3 - Free chlorine, turbidity and pH - daily (weekdays) (CCP)

S4 – Free chlorine and pH – daily (weekdays)


Figure 10-1 Mulgildie WTP Schematic

Drinking Water Quality Management Plan

Distribution

Water from the clearwater tank is pumped by a high lift pump into a grid of 100mm AC pipes forming the distribution network and to a 136kL elevated storage reservoir located on the eastern edge of town. When the pumps are not in operation the water is gravity fed from the elevated reservoir back into the reticulation system.

Sampling locations are sited at key points determined to provide the best indication of chlorine residual levels in the system. Chlorine residuals in the reticulation system are sampled and tested weekly. Samples are also taken as water leaves the reservoir. In addition, raw water and one treated water samples are taken regularly and sent to the Qld Health Laboratory for chemical analysis. One raw water and two treated water samples are taken regularly and sent to taken regularly and sent to Qld Health Laboratory for biological testing.

Figure 10-2 Mulgildie Water Supply Map

Table 10-1 Infrastructure Details Mulgildie Water Supply Scheme -

	Component	Scheme
	Name	Bore
	Туре	Artesian Bore x 1 2L/s
Sources	% of supply	100%
	Reliability	High
	Water quality issues	Iron, hardness, salinity, pH and temperature
	Туре	Artesian Bore
Sourcing Infrastructure	Description	Artesian Bore Installed = 1999 Casing = Steel Diameter = DN125 Depth = 634m
	Ownership	NBRC
Are there any sources that do not undergo treatment prior to supply?	No	
	Name	Mulgildie WTP
	Process	Aeration, pH adjustment (soda ash), sedimentation, filtration, UV, and disinfection (chlorination)
Mulgildie WTP	Design Capacity (20 hr operation)	2.5 L/s
	Daily flow range	60-70 kL/d
	Chemicals added	Caustic, sodium hypochlorite
	Standby chemical dosing facilities (Y/N)	Ν

	Component	Scheme				
	Water sourced from and %	Bore 100%				
	% of average day demand provided	100%				
	% of scheme supply					
	Distribution area supplied	100%				
	Bypasses / Variations	No				
	Location	Post Filter				
	Туре	Liquid sodium hypochlorite and U.V				
	Dose rate	Controlled by in-line analyser				
	Target residual levels	0.5 mg/l				
Disinfection	Duty/standby	Nil				
	Dosing arrangements	Fixed				
	Alarms	Nil				
	Auto shut-off arrangements	Nil				
	Pipe material	AC				
	Age range	40 – 50 years				
Distribution and	Approx % of total length	100%				
Reticulation System	Areas where potential long detention periods could be expected	Nil				
	Areas where low water pressure (e.g. < 12 m) could be expected during peak or other demand periods)	Nil				
	Name	Elevated Reservoir				
	Capacity	136kL				
Reservoirs	Roofed (Y/N)	Y				
	Vermin-proof (Y/N)	Y				

Component	Scheme
Runoff directed off roof (Y/N)	Y

10.2 Mulgildie Water Quality: Identifying Hazards and Hazardous Events

Water quality information has been collected by NBRC for raw water, treated water and reticulated supply for the period of April 2010 to November 2018. Analysis of this data has been completed to assess the results in comparison to the ADWG guideline values for parameters measured.

A summary of the water analysis undertaken for the Mulgildie Water Supply Scheme is contained in Table 10-2, Table 10-3, Table 10-4 and

Table 10-5. Section 10.5 includes graphs of sampling data.

For raw water and treated water the following parameters have been measured monthly:

- Conductivity
- pH
- Total & temporary hardness
- Alkalinity (including residual)
- Silica
- Total dissolved ions
- Total dissolved solids
- True colour
- Turbidity
- Saturation index
- Mole ratio
- Sodium absorption ratio

- Figure of merit ratio
- Cations (sodium, potassium, calcium, magnesium, and hydrogen)
- Anions (bicarbonate, carbonate, hydroxide, chloride, fluoride, nitrate, sulphate)
- Dissolved metals (iron, manganese, zinc, boron, copper, aluminium)
- Total metals (aluminium, arsenic, cadmium, chromium, copper, iron, lead, manganese, nickel, zinc)
- THM

The reticulated water scheme has been measured for pH, residual chlorine, *E. coli* and total coliforms.

Interpretation

Based on the data available, over the period of testing, there has been a low rate of sampling for Mulgildie with less than one test per month for raw water and treated water, and even less for the reticulated system.

Within the raw water sampling, turbidity and iron were above the guideline values for treated water, and all other values were below.

For sampling data taken from the Mulgildie WTP, there were two instances where turbidity values exceeded the guideline value. Iron also exceeded the ADWG guideline level in November 2017.

Within the reticulation system, there were two occurrences when residual chlorine fell below the ADWG recommended value. No total coliform or *E. coli* were detected in the reticulated water. There may be potential water quality issues within the reticulation system due to low levels of residual chlorine and total coliforms being detected. Increased frequency of sampling and testing, and operational response, has since reduced this risk.

Table 10-2 Mulgildie Raw Water

				Mulgildie Sou	rce – Bore		
Parameter	Sampling	Time	No of		Summary of Results		Comments
(mg/L unless otherwise specified)	location	Period	samples	Maximum Value	Average Value	Minimum Value	
Turbidity (NTU)	Bore	Apr 2010 – Nov 2018	100	49	6.3	<1	
Fluoride	Bore	Apr 2010 – Nov 2018	100	0.1	0.07	<0.05	Multiple limits of detection were used (<0.05 and <0.1). To calculate the stats, the absolute values were used.
Nitrate	Bore	Apr 2010 – Nov 2018	100	0.90	0.51	<0.50	
Sulfate	Bore	Apr 2010 – Nov 2018	100	16	12.9	10.6	
Dissolved metals			1	<u></u>	1		
Aluminium	Bore	Apr 2010 – Nov 2018	100	0.07	0.05	<0.05	
Boron	Bore	Apr 2010 – Nov 2018	100	0.28	0.20	0.17	
Copper	Bore	Apr 2010 – Nov 2018	100	0.05	0.03	<0.03	
Iron	Bore	Apr 2010 – Nov 2018	100	7.1	0.5	<0.01	
Manganese	Bore	Apr 2010 – Nov 2018	100	0.07	0.03	<0.01	
Zinc	Bore	Apr 2010 – Nov 2018	100	0.45	0.12	<0.01	
Total metals							
Aluminium	Bore	Nov 2017 – Oct 2018	2	0.047	0.038	0.029	
Arsenic	Bore	Nov 2017 – Oct 2018	2	<0.0001	<0.0001	<0.0001	All samples taken were <0.0001 mg/L
Cadmium	Bore	Nov 2017 – Oct 2018	2	<0.0001	<0.0001	<0.0001	All samples taken were <0.0001 mg/L
Chromium	Bore	Nov 2017 – Oct 2018	2	0.0002	0.00015	<0.0001	
Copper	Bore	Nov 2017 – Oct 2018	2	0.009	0.008	0.007	

Drinking Water Quality Management Plan

	Mulgildie Source – Bore												
Parameter	Sampling	Time	No of		Summary of Results	Comments							
(mg/L unless otherwise specified)	location	Period	samples	Maximum Average		Minimum							
				Value	Value	Value							
Iron	Bore	Nov 2017 – Oct 2018	2	3.8	2.55	1.3							
Lead	Bore	Nov 2017 – Oct 2018	2	0.0019	0.0013	0.0007							
Manganese	Bore	Nov 2017 – Oct 2018	2	0.036	0.019	0.0037							
Nickel	Bore	Nov 2017 – Oct 2018	2	0.012	0.011								
Zinc	Bore	Nov 2017 – Oct 2018	2	0.041	0.034	0.028							

Table 10-3 Mulgildie Treated Water

Plant				Mulgildie WTP											
Parameter (mg/L unless	Sampling location(s)		No of samples				Australian Drinking Water Guidelines guideline value for	No of samples exceeding Australian Drinking	Comment						
otherwise specified)		Time Period	taken in time period	Maximum Value	Average Value	Minimum Value	health unless otherwise specified	Water Guidelines guideline value							
Turbidity (NTU)	Reservoir	Apr 2010 – Nov 2018	93	6.0	1.5	<1.0	5	2	Aesthetic guideline only Exceedances in Oct and Nov 2015						

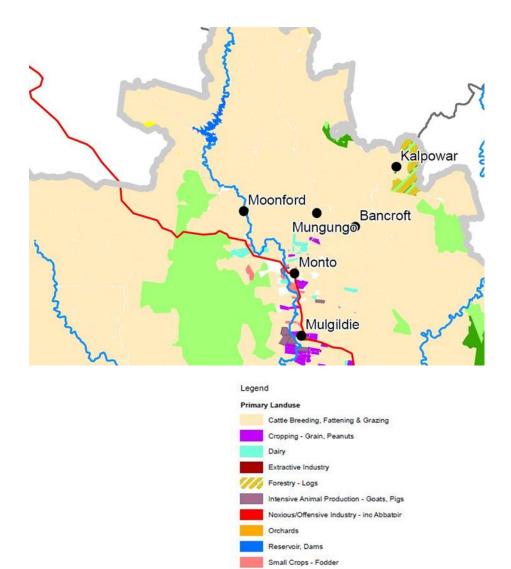
Plant					Mulgildie W	ТР			
Parameter (mg/L unless	Sampling location(s)		No of samples		Summary of result	S	Australian Drinking Water Guidelines	No of samples exceeding Australian Drinking	Comment
otherwise specified)		Time Period	taken in time period	Maximum Value	Average Value	Minimum Value	guideline value for health unless otherwise specified	Water Guidelines guideline value	
Fluoride	Reservoir	Apr 2010 – Nov 2018	93	0.20	0.07	<0.05	1.5	0	Multiple limits of detection were used (<0.05 and <0.1). To calculate the stats, the absolute values were used.
Nitrate	Reservoir	Apr 2010 – Nov 2018	93	4.20	0.60	<0.50	50	0	Aesthetic guideline only Multiple limits of detection were used (<0.5 and <1). To calculate the stats, the absolute values were used.
Sulfate	Reservoir	Apr 2010 – Nov 2018	93	24.0	13.6	12.0	250	0	Aesthetic guideline only
Dissolved metals		-					-		
Aluminium	Reservoir	Apr 2010 – Nov 2018	93	<0.05	<0.05	<0.05	0.1	0	Although 0.2mg/L is the aesthetic guideline value, <0.1 mg/L is desirable All values below detection limit

Plant					Mulgildie W	ТР			
Parameter (mg/L unless	Sampling location(s)		No of samples		Summary of result	S	Australian Drinking Water Guidelines	No of samples exceeding Australian Drinking	Comment
otherwise specified)		Time Period	taken in time period	Maximum Value	Average Value	Minimum Value	guideline value for health unless otherwise specified	Water Guidelines guideline value	
Boron	Reservoir	Apr 2010 – Nov 2018	93	0.32	0.20	<0.05	1	0	Although 4mg/L is the health guideline value, concentrations in uncontaminated sources is usually <1 mg/L
Copper	Reservoir	Apr 2010 – Nov 2018	93	0.04	0.03	<0.03	2(1)	0	Number in brackets denotes the aesthetic guideline value
Iron	Reservoir	Apr 2010 – Nov 2018	93	0.08	0.01	0.01	0.3	0	Aesthetic guideline only All values below detection limit
Manganese	Reservoir	Apr 2010 – Nov 2018	93	0.04	0.01	<0.01	0.5(0.1)	0	Number in brackets denotes the aesthetic guideline value
Zinc	Reservoir	Apr 2010 – Nov 2018	93	1.0	0.05	0.01	3	0	
Total metals									
Aluminium	Mulgildie Park	Nov 2017 – Oct 2018	3	0.013	0.007	<0.003	0.2	0	Aesthetic guideline only
Arsenic	Mulgildie Park	Nov 2017 – Oct 2018	3	<0.0001	<0.0001	<0.0001	0.01	0	All samples were <0.0001 mg/L

Plant					Mulgildie W	ТР			
Parameter (mg/L unless	Sampling location(s)		No of samples		Summary of result	s	Australian Drinking Water Guidelines	No of samples exceeding Australian Drinking	Comment
otherwise specified)		Time Period	taken in time period	Maximum Value	Average Value	Minimum Value	guideline value for health unless otherwise specified	Water Guidelines guideline value	
Cadmium	Mulgildie Park	Nov 2017 – Oct 2018	3	<0.0001	<0.0001	<0.0001	0.002	0	All samples were <0.0001 mg/L
Chromium	Mulgildie Park	Nov 2017 – Oct 2018	3	0.0012	0.001	0.0007	0.05	0	
Copper	Mulgildie Park	Nov 2017 – Oct 2018	3	0.029	0.02	0.006	2 (1)	0	Number in brackets denotes the aesthetic guideline value
Iron	Mulgildie Park	Nov 2017 – Oct 2018	3	0.58	0.26	0.052	0.3	1	Aesthetic guideline only Exceedance in November 2017
Lead	Mulgildie Park	Nov 2017 – Oct 2018	3	0.0016	0.0009	0.0003	0.01	0	
Manganese	Mulgildie Park	Nov 2017 – Oct 2018	3	0.046	0.017	0.0016	0.5 (0.1)	0	Number in brackets denotes the aesthetic guideline value
Nickel	Mulgildie Park	Nov 2017 – Oct 2018	3	0.007	0.006	0.004	0.02	0	
Zinc	Mulgildie Park	Nov 2017 – Oct 2018	3	0.023	0.019	0.015	3	0	Aesthetic guideline only

Table 10-4 Mulgildie Reticulated Water

Scheme Sampling Location					Mulgildie I	Reticulated Water		
Parameter (mg/L unless	Time Period	No of samples	s	ummary of Results	i	Australian Drinking Water Guidelines	No of samples exceeding Australian	Comment
otherwise specified)		Maximum Average Minimum health unless Value Value Value		Australian Drinking Water Guidelines guideline value				
pH (pH units)	Apr 2010 – Nov 2018	93	7.9	7.4	6.8	6.5 - 8.5	0	Aesthetic guideline only
Disinfectant residual	July 2016 – Nov 2018	26	1.9	0.97	0	>0.2 - 0.5	2	Guideline value is from the World Health Organization's Guidelines for Drinking-water Quality 4 th edition Chlorine residual <0.2 mg/L occurred in July 2016 and Dec 2017
Total coliform (mpn/100mL)	July 2016 – Nov 2018	27	0	0	0	NA	NA	
<i>E. coli</i> (CFU/100mL)	July 2016 – Nov 2018	27	0	0	0	None Detected	0	
Trihalomethanes	Sept 2016 – Oct 2018	3	0.016	0.013	0.012	0.25	0	


Table 10-5 Mulgildie Water Quality Complaints

Year	No of Water Quality Complaints	Water Quality Complaints per 1000 Connections	Main Reasons for Complaints	Likely Sources / Causes of Problems	Resolution of Problem
1-7-2010	1	13.69	- Taste and odour	- Unknown	- Unknown
to					
26-10-2018					

10.1 Mulgildie Catchment Characteristics

The area around Mulgildie has no influence on the water quality as the source water is from the Mulgildie Management Area which is part of the Great Artesian Basin.

There is no fracking occurring in the area.

Figure 10-3 Mulgildie Area

Vacant Rural Land State Forest National Park Towns

Highways/Major Roads

North Burnett Local Government Boundary

Rivers

10.2 Mulgildie Hazard Identification, Risk Assessment and Uncertainty

Table 9.6: Existing and Proposed Preventative Measures

				м	aximum Risk			P	esidual risk				Possible and Proposed
No.	Scheme Component	Hazard	Hazard Source	Consequence		Risk level	Existing Preventive Measures / Barriers.	Consequence	Likelihood	Risk level	Uncertainty	Comments	Further Risk Reduction Actions (Risk Management Improvement Plan Actions)
1	Source water	Biological contamination • Protozoa	 Livestock Wildlife Issues with Bore Infiltration 	Catastrophic	Rare	Low (4)	 Bore head sealed. Bore & treatment compound fully fenced and locked. Bore is artesian and 600 metres deep. Treatment Process: oxidation, coagulation, filtration, UV, chlorination 	Catastrophic	Never	Low (0)	Certain	Artesian	
2	Source water	Biological contamination • Bacteria • Viruses	 Livestock Wildlife Issues with Bore Infiltration 	Catastrophic	Rare	Low (4)	 Bore head sealed. Bore & treatment compound fully fenced and locked. Bore is artesian and 600 metres deep. Treatment Process: oxidation, coagulation, filtration, UV, chlorination 	Catastrophic	Never	Low (0)	Certain	Artesian	
3	Source water	Chemical contamination Heavy metals 	1. Natural heavy metals and other chemicals in water	Major	Unlikely	Medium (8)	 Bore head sealed. Bore & treatment compound fully fenced and locked. Bore is artesian and 600 metres deep. Treatment processes, pH adjustment oxidation aeration and filtration Annual monitoring and testing of source water. 	Moderate	Rare	Low(5)	Certain	Artesian	
4	Source water	Chemical contamination Nutrients: Nitrate Anions: Sulphate, Fluoride 	 Pesticides and Fertilisers Natural occurrences of anions 	Minor	Possible	Medium (6)	 Bore head sealed. Bore & treatment compound fully fenced and locked. Bore is artesian and 600 metres deep. 	Major	Rare	Low (1)	Certain	Artesian.	
5	Source water	Chemical contamination General metals: Aluminium, Iron, Manganese, Boron, Copper 	 Pesticides and Fertilisers Natural chemicals in water 	Moderate	Unlikely	Medium (6)	 Bore head sealed. Bore & treatment compound fully fenced and locked. Bore is artesian and 640 metres deep. Treatment processes, pH adjustment oxidation aeration and filtration Annual monitoring and testing of source water. 	Moderate	Rare	Low (3)	Certain	Artesian	
8	Source water	Lack of supply	1. Casing failure	Moderate	Rare	Low (3)	1. Periodic Casing Inspection (5-7 years)	Minor	Rare	Low (2)	Certain	Artesian	
9	Source water	Lack of supply	Depletion of Great Artesian Basin aquifer	Moderate	Rare	Medium (5)	 Installation of pump Importing water Drought management Plan actions: restrictions, communication etc. Daily standing levels and pumping water levels for the bore are monitored and data trended. Monthly reports provided to Council and DNR. 	Moderate	Rare	Low (3)	Reliable	Artesian	
10	Treatment	Biological contamination Bacteria 	 Sand filters are open topped Staff error 	Major	Rare	High (10)	 Treatment processes – Chlorine disinfection Chlorine levels are tested daily 	Minor	Rare	Low (4)	Confident		

Drinking Water Quality Management Plan

Revision 7

				M	aximum Risk			R	esidual risk		
No.	Scheme Component	Hazard	Hazard Source	Consequence	Likelihood	Risk level	Existing Preventive Measures / Barriers.	Consequence	Likelihood	Risk level	Uncertainty
11	Treatment	Viruses Biological contamination Protozoa	 Cross contamination Vermin and bird access Staff error 	Moderate	Rare	Medium (6)	 Injection pumps and chlorine supply are also checked and inspected at the same time. Public notification process (boil water alert) Trained and qualified operators – good housekeeping Security and vermin-proofing Regular cleaning and maintenance of process equipment Detection and dilution during treatment processes and storage Treatment processes, Coagulation, filtration and UV Chemical injection levels are tested three times per week. Dosing equipment is checked three times per week Security and vermin-proofing Trained and qualified operators – good housekeeping 	Major	Rare	Low (4)	Reliable
12	Treatment	Chemical contamination	 Chemical overdose due to equipment failure Sand filters are open topped Loss of Chemical supplies Communication Breakdown (alarms) Staff error Plant Design 	Moderate	Possible	Medium (9)	 Mulgildie 2013-02: Online analyser installed and alarmed to SCADA. 1. Detection and dilution during treatment processes and storage 2. Treatment processes, pH adjustment and aeration 3. Chemical injection levels are tested three times per week. On-line chlorine analyser is installed and alarmed to SCADA 4. Dosing equipment is checked three times per week 5. Trained and qualified operators 	Moderate	Rare	Medium (6)	Confident
13	Treatment	Disinfection by-products	 High raw water turbidity (dependent on nature of turbidity) Plant Design 	Major	Rare	Medium (5)	 Degeneration of sodium hypochlorite unlikely due to the relatively small storage capacity which requires monthly refill Staff aware of potential issues and refill fortnightly if possible Mulgildie 2018-01: THM monitoring occurs monthly 	Minor	Unlikely	Low (4)	Confident
14	Treatment	Physical/chemical contamination Turbidity Manganese Particulates	 Failure of back-wash of sand filters Sand filters are open topped 	Minor	Unlikely	Low (4)	 Treatment processes, pH adjustment and aeration, coagulation and filtration Operation of filters monitored three times per week. 	Moderate	Rare	Low(3)	Confident
15	Treatment	 Clearwater reservoir pump failure 	 Inadequate maintenance/lack of standby pumps Communication Breakdown 	Moderate	Unlikely	Medium (6)	 Estimated one week's supply in tower reservoir. Pumping equipment checked three times per week 	Minor	Unlikely	Low (4)	Confident

Page **196** of **323**

ncertainty	Comments	Possible and Proposed Further Risk Reduction Actions (Risk Management Improvement Plan Actions)
liable	Multiple barriers	
onfident		
onfident	THM monitoring have commenced. All results are below ADWG limits.	
onfident		
onfident	Existing measures are robust	

					м	aximum Risk	1		R	esidual risk				Possible and Proposed
1	No.	Scheme Component	Hazard	Hazard Source	Consequence	Likelihood	Risk level	Existing Preventive Measures / Barriers.	Consequence	Likelihood	Risk level	Uncertainty	Comments	Further Risk Reduction Actions (Risk Management Improvement Plan Actions)
								3. Standby pump installed						

10.3 Mulgildie Risk Management Measures

Table 9.7: Existing and Proposed Preventative Measures

No.	Scheme Component	Hazard	Hazard Source	What are the existing preventative measures?	Do existing preventative measures impact on likelihood &/or consequence?	How effective is/are the existing preventative measure/s & on what basis has this been determined?	Residual risk after preventative measures	ls the level of residual risk acceptable	Proposed measures to reach an acceptable level or residual risk	Responsible Work Unit/ Organisation (& arrangements with external organisation if applicable)
1	Source water	Biological contamination • Protozoa	 Livestock Wildlife Issues with Bore Infiltration 	 Bore head sealed. Bore & treatment compound fully fenced and locked. Bore is artesian and 600 metres deep. Treatment Process: oxidation, coagulation, filtration, UV, chlorination 	Likelihood	Effective. No known instances of contamination recorded	Low (1)	Yes		
2	Source water	Biological contamination • Bacteria • Viruses	 Livestock Wildlife Issues with Bore Infiltration 	 Bore head sealed. Bore & treatment compound fully fenced and locked. Bore is artesian and 600 metres deep. Treatment Process: oxidation, coagulation, filtration, UV, chlorination 	Likelihood	Effective. No known instances of contamination recorded	Low(1)	Yes		
3	Source water	Chemical contamination • Heavy metals	1. Natural heavy metals and other chemicals in water	 Bore head sealed. Bore & treatment compound fully fenced and locked. Bore is artesian and 600 metres deep. Treatment processes, pH adjustment oxidation aeration and filtration Annual monitoring and testing of source water. 	Likelihood	Effective. No known instances of contamination recorded	Low (5)	Yes		

Drinking Water Quality Management Plan

No.	Scheme Component	Hazard	Hazard Source	What are the existing preventative measures?	Do existing preventative measures impact on likelihood &/or consequence?	How effective is/are the existing preventative measure/s & on what basis has this been determined?	Residual risk after preventative measures	Is the level of residual risk acceptable	Proposed measures to reach an acceptable level or residual risk	Responsible Work Unit/ Organisation (& arrangements with external organisation if applicable)
4	Source water	Chemical contamination • Nutrients: Nitrate • Anions: Sulphate, Fluoride	 Pesticides and Fertilisers Natural occurrences of anions 	 Bore head sealed. Bore & treatment compound fully fenced and locked. Bore is artesian and 600 metres deep. 	Likelihood	Effective. No known instances of contamination recorded	Low (1)	Yes		
5	Source water	Chemical contamination • General metals: Aluminium, Iron, Manganese, Boron, Copper	 Pesticides and Fertilisers Natural chemicals in water 	 Bore head sealed. Bore & treatment compound fully fenced and locked. Bore is artesian and 640 metres deep. Treatment processes, pH adjustment oxidation aeration and filtration Annual monitoring and testing of source water. 	Likelihood	Effective. No known instances of contamination recorded	Low (3)	Yes		
6	Source water	Chemical contamination	1. Accidental spills	1. Periodic Casing Inspection (5-7 years)	Likelihood and Consequence	Effective – No known instances of contamination recorded	Low (2)	Yes		
7	Source water	Physical contamination • Ash • Mud	 Soil erosion Flood waters (high turbidity and colour) Bush fires Major Storms 	 Installation of pump Importing water Drought management Plan actions: restrictions, communication etc. Daily standing levels and pumping water levels for the bore are monitored and data trended. Monthly reports provided to Council and DNR. 	Likelihood and Consequence	Effective – No known instances of contamination recorded	Low (3)	Yes		

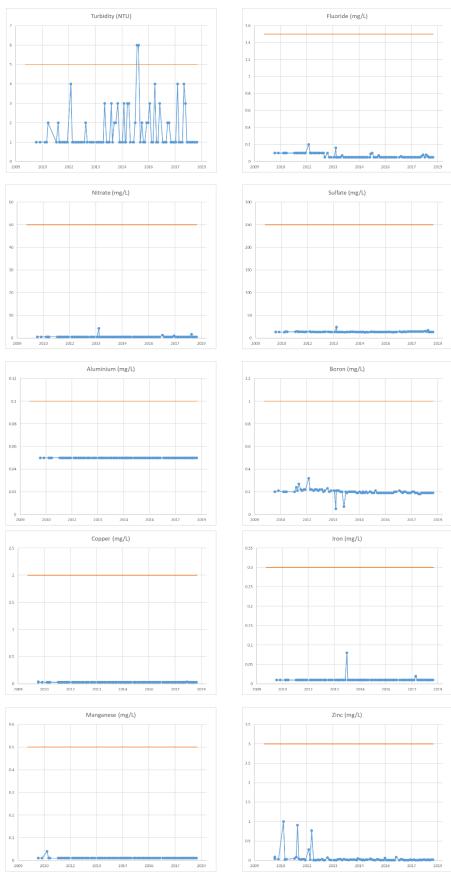
No.	Scheme Component	Hazard	Hazard Source	What are the existing preventative measures?	Do existing preventative measures impact on likelihood &/or consequence?	How effective is/are the existing preventative measure/s & on what basis has this been determined?	Residual risk after preventative measures	ls the level of residual risk acceptable	Proposed measures to reach an acceptable level or residual risk	Responsible Work Unit/ Organisation (& arrangements with external organisation if applicable)
8	Source water	Lack of supply	1. Casing failure	 Treatment processes – Chlorine disinfection Chlorine levels are tested daily Injection pumps and chlorine supply are also checked and inspected at the same time. Public notification process (boil water alert) Trained and qualified operators – good housekeeping Security and vermin-proofing Regular cleaning and maintenance of process equipment 	Likelihood	Effective – no casing failure recorded to date	Low (4)	Yes		
9	Source water	Lack of supply	1. No flow	 Detection and dilution during treatment processes and storage Treatment processes, Coagulation, filtration and UV Chemical injection levels are tested three times per week. Dosing equipment is checked three times per week Security and vermin-proofing Trained and qualified operators – good housekeeping Mulgildie 2013-02: Online analyser installed and alarmed to SCADA. 	Likelihood	Effective- reliable artesian supply	Low (4)	Yes		

No.	Scheme Component	Hazard	Hazard Source	What are the existing preventative measures?	Do existing preventative measures impact on likelihood &/or consequence?	How effective is/are the existing preventative measure/s & on what basis has this been determined?	Residual risk after preventative measures	ls the level of residual risk acceptable	Proposed measures to reach an acceptable level or residual risk	Responsible Work Unit/ Organisation (& arrangements with external organisation if applicable)
10	Treatment	Biological contamination • Bacteria • Viruses	 Failure of chlorine injection Insufficient chlorine residual Sand filters are open topped Loss of Chemical supplies Staff error Plant Design 	 Detection and dilution during treatment processes and storage Treatment processes, pH adjustment and aeration Chemical injection levels are tested three times per week. On-line chlorine analyser is installed and alarmed to SCADA Dosing equipment is checked three times per week Trained and qualified operators 	Likelihood	Ineffective - three tests per week is not enough to maintain confidence that residual chlorine levels are within guidelines	Medium (6)	Yes		
11	Treatment	Biological contamination • Protozoa	 Cross contamination Vermin and bird access Staff error Plant Design 	 Degeneration of sodium hypochlorite unlikely due to the relatively small storage capacity which requires monthly refill Staff aware of potential issues and refill fortnightly if possible Mulgildie 2018-01: THM monitoring occurs monthly 	No	Inability to detect contamination in the treatment process	Low (4)	Yes		
12	Treatment	Chemical contamination	 Chemical overdose due to equipment failure Sand filters are open topped 	 Treatment processes, pH adjustment and aeration, coagulation and filtration Operation of filters monitored three times per week. 	Likelihood	Effective proven treatment processes	Low (3)	Yes		

No.	Scheme Component	Hazard	Hazard Source	What are the existing preventative measures?	Do existing preventative measures impact on likelihood &/or consequence?	How effective is/are the existing preventative measure/s & on what basis has this been determined?	Residual risk after preventative measures	Is the level of residual risk acceptable	Proposed measures to reach an acceptable level or residual risk	Responsible Work Unit/ Organisation (& arrangements with external organisation if applicable)
			 Loss of Chemical supplies Communication breakdown (alarms) Staff error Plant Design 							
13	Treatment	Disinfection by- products	 High raw water turbidity (dependent on nature of turbidity) Plant Design 	 Estimated one week's supply in tower reservoir. Pumping equipment checked three times per week Standby pump installed 	No	No THM exceedances recorded in treated water	Low (4)	Yes		
14	Treatment	Physical/chemical contamination • Turbidity • Manganese • Particulates	 Failure of back- wash of sand filters Sand filters are open topped 	 Bore head sealed. Bore & treatment compound fully fenced and locked. Bore is artesian and 600 metres deep. Treatment Process: oxidation, coagulation, filtration, UV, chlorination 	Likelihood and Consequence	Effective.	Low (1)	Yes		
15	Treatment	Clearwater reservoir pump failure	 Inadequate maintenance/lack of standby pumps Communication Breakdown 	 Bore head sealed. Bore & treatment compound fully fenced and locked. Bore is artesian and 600 metres deep. Treatment Process: oxidation, coagulation, filtration, UV, chlorination 	Likelihood	Effective, reservoir capacity allows time to provide a generator.	Low(1)	Yes		


10.4 Mulgildie Risk Management Improvement Program

Table 10-6 Mulgildie Risk Improvement Program


		_		I	isk Improvement Actions		Risk Improvement Actions				
Risk No.	Scheme Component / Sub-component	Hazard/ Hazardous event	Priority	interim	short-term	long-term	Target dates	Estimated cost	Responsibility		
		N/A									

10.5 Mulgildie Water Scheme Water Quality Data

The results are spread across the twelve-month period of the year indicated. Note the orange lines indicate the ADWG limits.

Mulgildie untreated bore water 2010-2018

Mulgildie treated water 2010-2018

11. MUNDUBBERA WATER SUPPLY SCHEME

11.1 Details of Infrastructure for Providing the Service

Source Water

Raw water for Mundubbera is sourced from the Burnett River at a location south of the town. SunWater are the independent supplier of bulk water in the Upper Burnett Water Supply Scheme and NBRC receive priority water allocation.

Bathymetric survey and geotechnical assessments were undertaken to inform the proposed design outcomes and replacement intake location.

A jetty structure is located close to a local depression in the riverbed, downstream of the existing jetty structure and approximately 450m upstream of the Jones Weir. Jetty is 25m long, approximately 4 m wide and supported on six bored piles, which have been provided with a rock socket footing into the fresh arenite rock formation. The replacement jetty structure has been designed to withstand 1 in 500 ARI flood event conditions, flood loading applied by a 3m high debris mat and impact loading from a two-tonne log. This will provide this replacement jetty with more resilience than the previous structures.

The original 26.5 L/s maximum flow rate pumps have been reused. Pump intakes have been set at RL 104.73 and are protected with intake screens and shroud covers.

Riser pipework has been constructed from Grade 316L stainless steel. Jetty pipework is DICL, with rubber expansion joints to allow for expansion movements. Pipework connection between the jetty pipework and existing rising main is constructed from OD 250 PE 100 SDR 11 piping.

Treatment Process

The 2.8ML ground level reservoir and 36L/s WTP are located adjacent to Mundubbera's only other treated water storages, a 680kL ground level reservoir and 455kL elevated storage reservoir.

Augmentation of Mundubbera's WTP occurred in early 1999 with the replacement of the 19L/s WTP with a 36L/s (greensand) automated plant with a design population of 2,160 and construction of the 2.8ML ground level reservoir. The WTP is an Aquagenics Plant which includes clarification, filtration, pH adjustment and activated carbon treatment. Disinfection is achieved through liquid chlorine injection.

The Mundubbera WTP is automatic in operation. The WTP has staff onsite daily who conduct manual plant inspections. The WTP pumps and reservoir levels are linked to the SCADA system. If problems at these WTP elements are detected through SCADA (i.e. failure of chlorine dosing or reservoir levels) an alarm is triggered and an SMS is sent to the operator's phone, who will then visit the site. Chlorine injection at the WTP is also linked to the SCADA system, however the recorded data needs to be reviewed by operators to detect an injection failure; it is not linked to an alarm system. There is a 2000 L chlorine storage tank at the WTP, the level of which is reviewed daily by operators. There is a documented WTP operation manual.

MUNDUBBERA

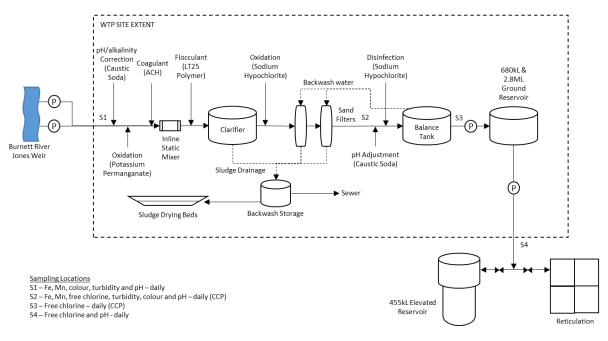


Figure 11-1 Mundubbera Water Infrastructure Scheme Schematic

Distribution

Following treatment, water is pumped from the Ground Level Reservoir at the WTP through the reticulation system to the Elevated Reservoir. When the pumps are not in operation the water is gravity fed from the Elevated Reservoir back into the reticulation system.

Sampling locations are sited at key points determined to provide the best indication of chlorine residual levels in the system. Samples are also taken as water leaves the reservoir. Chlorine residuals in the network are sampled and tested on-site weekly. Raw and treated water samples are sent regularly to the Queensland Health Laboratory for chemical analysis. Raw and treated water samples are sent regularly to the Qld Health Laboratory for biological testing.

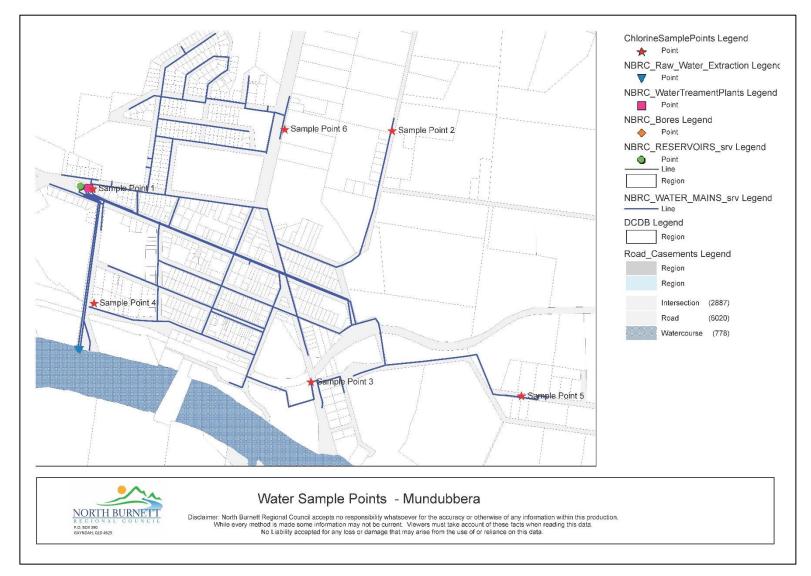


Figure 11-2 Mundubbera Water Supply Network

Table 11-1 Infrastructure Details – Mundubbera Water Supply Scheme

	Component	Scheme
	Name	Burnett River
	Туре	Submerged river intakes, upstream of Jones Weir
Sources	% of supply	100%
Sources	Reliability	Reliable flow though intake structure. Prone to flood damage under extreme flood events
	Water quality issues	hardness, iron, manganese
	Туре	Pumped
Sourcing Infrastructure	Description	2 x submersible centrifugal pumps
Are there any sources that do not undergo treatment prior to supply?	No	_
	Name	Mundubbera WTP
	Process	Aquagenics Plant which includes clarification, filtration, pH adjustment activated carbon treatment
	Design Capacity (20 hr operation)	36L/s
	Daily flow range	0.5 – 1.2 ML/d
	Chemicals added	Poly, ACH, caustic, sodium hypochlorite
Mundubbera WTP	Standby chemical dosing facilities (Y/N)	γ
	Water sourced from and %	River 100%
	% of average day demand provided	100%
	% of scheme supply	1000/
	Distribution area supplied	100%
	Bypasses / Variations	No
Disinfection	Location	Between clarifier and sand filter

	Component	Scheme
	Туре	Liquid sodium hypochlorite via dosing pump
	Dose rate	Controlled by in-line analyser
	Target residual levels	0.5 mg/l
	Duty/standby	Υ
	Dosing arrangements	fixed
	Alarms	Nil
	Auto shut-off arrangements	Nil
	Pipe material	AC
	Age range	60 – 65 years
	Approx % of total length	80%
	Pipe material	PVC
Distribution and Reticulation	Age range	5 – 15 years
System	Approx % of total length	20%
	Areas where potential long detention periods could be expected	No
	Areas where low water pressure (e.g. < 12 m) could be expected during peak or other demand periods)	No
	Name	Ground Level Reservoir 1
	Capacity (ML)	2.8ML
	Roofed (Y/N)	Υ
Reservoirs	Vermin-proof (Y/N)	Y
	Runoff directed off roof (Y/N)	γ
	Name	Ground Reservoir

Component	Scheme
Capacity (ML)	0.680ML
Roofed (Y/N)	Y
Vermin-proof (Y/N)	Y
Runoff directed off roof (Y/N)	Υ
Name	Elevated Reservoir
Capacity (ML)	0.455ML
Roofed (Y/N)	Υ
Vermin-proof (Y/N)	γ
Runoff directed off roof (Y/N)	Y

11.2 Mundubbera Water Quality: Identifying Hazards and Hazardous Events

Water quality information has been collected by NBRC for raw water, treated water and reticulated supply for the period of January 2010 to November 2018. Analysis of this data has been completed to assess the results in comparison to the ADWG guideline values for parameters measured. It is noted that no SunWater water quality data was reviewed for raw water

A summary of the water analysis undertaken for the Mundubbera Water Supply Scheme is contained in Table 11-2, Table 11-3, Table 11-4 and Table 11-5. Section 11.7 includes graphs of sampling data.

For raw water and treated water the following parameters have been measured monthly:

- Conductivity
- pH
 - Total & temporary hardness
- Alkalinity (including residual)
- Silica
- Total dissolved ions
- Total dissolved solids
- True colour
- Turbidity
- Saturation index
- Mole ratio
- Sodium absorption ratio

- Figure of merit ratio
- Cations (sodium, potassium, calcium, magnesium, and hydrogen)
- Anions (bicarbonate, carbonate, hydroxide, chloride, fluoride, nitrate, sulphate)
- Dissolved metals (iron, manganese, zinc, boron, copper, aluminium)
- Total metals (aluminium, arsenic, cadmium, chromium, copper, iron, lead, manganese, nickel, zinc)
- THM

The reticulated water scheme has been measured for pH, residual chlorine, *E. coli* and total coliforms.

Interpretation

Over the period of testing there has been a high rate of sampling for Mundubbera with approximately 3 tests per month for raw water and treated water, and 11.5 tests per month for the reticulated system.

Within the raw water sampling turbidity, iron, manganese, and aluminium are higher than the drinking water guideline values but tend to decrease from 2013 onwards.

For sampling data taken from the Mundubbera WTP, turbidity, iron, and aluminium also exceeded the drinking water guideline levels.

Within the reticulation system, pH fell below 9.5 in October 2010. There were 23 occurrences when residual chlorine fell below the ADWG recommended value, though no total coliforms or *E. coli* were detected. There were potential water quality issues within the reticulation system due to low levels of residual chlorine and total coliforms being detected. Increased frequency of sampling and testing, and operational response, has since reduced this risk.

Table 11-2 Mundubbera Raw Water Source

Mundubbera Source - Burnett River										
Parameter (mg/L unless otherwise specified)	Sampling location	Time Period	No of samples	Summary of Results						
				Maximum Value	Average Value	Minimum Value	Comments			
Turbidity (NTU)	River	January 2010 – Nov 2018	345	456	34.8	<1.0				
Fluoride	River	January 2010 – Nov 2018	345	0.60	0.17	0.05	Multiple limits of detection were used (<0.1, <0.2 and <0.25). To calculate the stats, the absolute values were used.			
Nitrate	River	January 2010 – Nov 2018	345	5.00	0.93	0.50	Multiple limits of detection were used (<0.5 to <5). To calculate the stats, the absolute values were used.			
Sulfate	River	January 2010 – Nov 2018	345	80.0	26.1	1.6				
Dissolved metals			1							
Aluminium	River	January 2010 – Nov 2018	345	2.2	0.1	<0.05				
Boron	River	January 2010 – Nov 2018	345	0.14	0.06	0.02				
Copper	River	January 2010 – Nov 2018	345	0.43	0.04	<0.03				
Iron	River	January 2010 – Nov 2018	345	1.30	0.08	<0.01				
Manganese	River	January 2010 – Nov 2018	345	7.0	0.08	<0.01				
Zinc	River	January 2010 – Nov 2018	345	0.56	0.02	<0.01				
Total metals	1	1	1		1	1				
Aluminium	115 Leichhardt Street	April 2018 – October 2018	2	0.7	0.59	0.48				

Drinking Water Quality Management Plan

Mundubbera Source - Burnett River											
Parameter (mg/L unless otherwise specified)	Sampling location	Time Period	No of samples	Summary of Results							
				Maximum Value	Average Value	Minimum Value	Comments				
Arsenic	115 Leichhardt Street	April 2018 – October 2018	2	0.0018	0.0015	0.0012					
Cadmium	115 Leichhardt Street	April 2018 – October 2018	2	<0.0001	<0.0001	<0.0001	All samples taken were <0.0001 mg/L				
Chromium	115 Leichhardt Street	April 2018 – October 2018	2	0.001	0.0009	0.0008					
Copper	115 Leichhardt Street	April 2018 – October 2018	2	0.02	0.013	0.006					
Iron	115 Leichhardt Street	April 2018 – October 2018	2	1.2	1.06	0.93					
Lead	115 Leichhardt Street	April 2018 – October 2018	2	0.013	0.0068	0.0007					
Manganese	115 Leichhardt Street	April 2018 – October 2018	2	0.45	0.26	0.074					
Nickel	115 Leichhardt Street	April 2018 – October 2018	2	0.004	0.003	0.002					
Zinc	115 Leichhardt Street	April 2018 – October 2018	2	0.002	0.013	0.006					

Plant					Mundubbera V	VTP			
				Sur	nmary of result	ts	Australian Drinking	No of samples	
Parameter (mg/L unless otherwise specified)	Sampling location(s)	Time Period	No of samples taken in time period	Maximum Value	Average Value	Minimum Value	Water Guidelines guideline value for health unless otherwise specified	exceeding Australian Drinking Water Guidelines guideline value	Comment
Turbidity (NTU)	Reservoir	January 2010 – Nov	374	162	2.3	<1.0	5	7	Aesthetic guideline only
		2018							Exceedances occurred in: • Jan, Mar, Oct 2010 • Jan, Sept 2011 • Feb, Nov 2012
Fluoride	Reservoir	January 2010 – Nov 2018	374	0.6	0.2	0.08	1.5	0	Multiple limits of detection were used (<0.1, <0.2 and <0.25). To calculate the stats, the absolute values were used.
Nitrate	Reservoir	January 2010 – Nov	373	5.0	0.98	0.15	50	0	Aesthetic guideline only
		2018							Multiple limits of detection were used (<0.5 to <5). To calculate the stats, the absolute values were used.
Sulfate	Reservoir	January 2010 – Nov 2018	374	216	26	1.1	250	0	Aesthetic guideline only
Dissolved metals		2018							

Plant					Mundubbera V	VTP			
				Sur	mmary of resul	ts	Australian Drinking	No of samples	
Parameter (mg/L unless otherwise specified)	Sampling location(s)	Time Period	No of samples taken in time period	Maximum Value	Average Value	Minimum Value	Water Guidelines guideline value for health unless otherwise specified	exceeding Australian Drinking Water Guidelines guideline value	Comment
Aluminium	Reservoir	January 2010 – Nov 2018	374	2.0	0.06	<0.05	0.1	2	Although 0.2mg/L is the aesthetic guideline value, <0.1 mg/L is desirable
									Exceedances occurred in Oct 2010 and Nov 2012
Boron	Reservoir	January 2010 – Nov 2018	374	0.19	0.06	0.02	1	0	Although 4mg/L is the health guideline value, concentrations in uncontaminated sources is usually <1 mg/L
Copper	Reservoir	January 2010 – Nov 2018	374	0.72	0.08	<0.03	2 (1)	0	Number in brackets denotes the aesthetic guideline value
Iron	Reservoir	January 2010 – Nov 2018	374	1.00	0.02	<0.01	0.3	2	Aesthetic guideline only Exceedances occurred in Oct 2010 and Nov 2012
Manganese	Reservoir	January 2010 – Nov 2018	374	0.04	0.01	<0.01	0.5 (0.1)	0	Number in brackets denotes the aesthetic guideline value
Zinc	Reservoir	January 2010 – Nov 2018	374	0.65	0.02	<0.01	3	0	
Total metals									

Plant					Mundubbera V	VTP			
				Sur	mmary of result	s	Australian Drinking	No of samples	
Parameter (mg/L unless otherwise specified)	Sampling location(s)	Time Period	No of samples taken in time period	Maximum Average Value Value		Minimum Value	Water Guidelines guideline value for health unless otherwise specified	exceeding Australian Drinking Water Guidelines guideline value	Comment
Aluminium	115 Leichhardt/Jack Parr Street	April 2018 – October 2018	3	0.081	0.038	0.013	0.2	0	Aesthetic guideline only
Arsenic	115 Leichhardt/Jack Parr Street	April 2018 – October 2018	3	0.0007	0.0004	0.0003	0.01	0	
Cadmium	115 Leichhardt/Jack Parr Street	April 2018 – October 2018	3	<0.0001	<0.0001	<0.0001	0.002	0	All samples were <0.0001 mg/L
Chromium	115 Leichhardt/Jack Parr Street	April 2018 – October 2018	3	0.0002	0.0001	<0.0001	0.05	0	
Copper	115 Leichhardt/Jack Parr Street	April 2018 – October 2018	3	0.068	0.05	0.035	2 (1)	0	Number in brackets denotes the aesthetic guideline value
Iron	115 Leichhardt/Jack Parr Street	April 2018 – October 2018	3	0.1	0.046	0.019	0.3	0	Aesthetic guideline only
Lead	115 Leichhardt/Jack Parr Street	April 2018 – October 2018	3	0.0018	0.0007	0.00004	0.01	0	
Manganese	115 Leichhardt/Jack Parr Street	April 2018 – October 2018	3	0.013	0.0057	0.0013	0.5 (0.1)	0	Number in brackets denotes the aesthetic guideline value

Plant					Mundubbera W	/TP			
Parameter (mg/L unless otherwise specified)	Sampling location(s)	Time Period	No of samples taken in time period	Summary of results Maximum Average Minimum Value Value Value			Australian Drinking Water Guidelines guideline value for health unless otherwise specified	No of samples exceeding Australian Drinking Water Guidelines guideline value	Comment
Nickel	115 Leichhardt/Jack Parr Street	April 2018 – October 2018	3	0.0006	0.0005	0.0004	0.02	0	
Zinc	115 Leichhardt/Jack Parr Street	April 2018 – October 2018	3	0.014	0.009	0.006	3	0	Aesthetic guideline only

Table 11-4 Mundubbera Reticulated Water

Scheme Sampling Location	Mundubbera Reticulated Water										
Parameter (mg/L unless otherwise specified)	Time Period	No of samples	Su Maximum Value				No of samples exceeding Australian Drinking Water Guidelines guideline value	Comment			
рН (pH units)	January 2010 – Nov 2018	374	8.3	7.4	6.2	6.5 - 8.5	1	Aesthetic guideline only pH <6.5 occurred in Oct 2010			

Scheme Sampling Location	-	-			Mundubbe	ra Reticulated Water	-	
Parameter	Time Period	No of samples		mmary of Result		Drinking Water exceeding		Comment
(mg/L unless otherwise specified)			Maximum Value	Average Value	Minimum Value	Guidelines guideline value for health unless otherwise specified	Australian Drinking Water Guidelines guideline value	
Disinfectant residual	July 2016 – Nov 2018	302	3.2	1.5	0	>0.2 - 0.5	23	Guideline value is from the World Health Organization's Guidelines for Drinking-water Quality 4 th edition Chlorine residual <0.2 mg/L occurred in Jul,
Total coliform (mpn/100mL)	July 2016 – Nov 2018	311	2	0.006	0	NA	NA	Aug, Oct and Nov 2017 Improved sampling and response have reduced risk
<i>E. coli</i> (CFU/100ml)	July 2016 – Nov 2018	311	0	0	0	None Detected	0	
Trihalomethanes	Sept 2016 –Jun 2018	17	0.37	0.22	0.012	0.25	5	Exceedance in April 2018 and May 2018

Table 11-5 Mundubbera Water Quality Complaints

Year	No of Water Quality Complaints	Water Quality Complaints per 1000 Connections	Main Reasons for Complaints	Likely Sources / Causes of Problems	Resolution of Problem
1-7-2010					
to	0	0			
26-10-2018					

11.3 Mundubbera Catchment Characteristics

The water source for the Mundubbera Township is taken from Jones Weir built over the Burnett River and located on the southern edge of town.

Influences on the water quality are numerous as approximately nine kilometres upstream from the weir is the confluence of the Boyne and Auburn rivers with the Burnett. Catchments of the three rivers are from mostly hilly to undulating topography with agricultural industry consisting of large areas of grazing on both improved and unimproved pasture, fodder cropping, cereal cropping, pecan, mango, forestry, National Parks, citrus and stone fruit orchards and the largest table grape growing industry in the state.

Dependant on rainfall in any area of the 23,000 km² catchment, the natural water quality can change rapidly making water treatment a continuously challenging process.

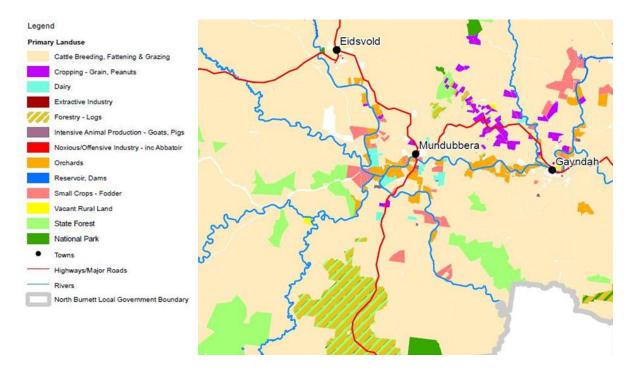


Figure 11-3 Mundubbera Catchment Area

11.4 Mundubbera Hazard Identification, Risk Assessment and Uncertainty

 Table 11-6 Existing and Proposed Preventative Measures

				Ma	aximum Risk				Residual risk				Possible and
No.	Scheme Component	Hazard	Hazard Source	Consequence	Likelihood	Risk level	Existing Preventive Measures / Barriers.	Consequence	Likelihood	Risk level	Uncertainty	Comments	Proposed Further Risk Reduction Actions (Risk Management Improvement Plan Actions)
1	Source water	Biological contamination • Protozoa	 Livestock Wildlife Issues with Bore Infiltration Septic systems/sewage Recreation 	Catastrophic	Unlikely	High (10)	1. Coagulation, clarification, and dual filtration followed by disinfection	Catastrophic	Rare	Medium (6)	Uncertain	Treatment systems are robust	
2	Source water	Biological contamination • Bacteria • Viruses	 Livestock Wildlife Issues with Bore Infiltration Septic Systems/sewage Recreation 	Catastrophic	Unlikely	High (10)	 Coagulation, clarification, and dual filtration followed by disinfection Catchment group education programs 	Catastrophic	Rare	Medium (6)	Treatment seen and shown as effective	Treatment systems are robust	
3	Source water	Chemical contamination Heavy metals 	1. Natural heavy metal and other chemicals in water	Major	Unlikely	Medium (8)	1. Treatment processes, flocculation, clarifier, oxidisation, and filtration	Major	Rare	Medium (5)	Confident	Existing measures are robust. Annual monitoring and testing of source water is undertaken	
4	Source water	Chemical contamination Nutrients: Nitrate Anions: Sulphate, Fluoride 	 Pesticides and Fertilisers Natural occurrences of anions 	Minor	Possible	Medium (6)	1. Treatment processes, flocculation, clarifier, oxidisation, and filtration	Minor	Unlikely	Low (4)	Confident	Existing measures are robust	
5	Source water	Chemical contamination General metals: Aluminium, Iron, Manganese, Boron, Copper	1. Pesticides and Fertilisers 2. Natural chemicals in water	Moderate	Unlikely	Medium (6)	1. Treatment processes, flocculation, clarifier, oxidisation, and filtration	Moderate	Rare	Low (3)	Confident	Existing measures are robust	
6	Source water	Chemical contamination	1. Accidental spills	Moderate	Rare	Low (3)	 Detection and dilution during treatment processes and storage Emergency response Public notification process (do not drink alert) 	Insignificant	Rare	Low (1)	Uncertain	Small concentration. Only risk of any real consequence would be a chemical spill near the intake Inability to predict type or consistency of possible spill?	
7	Source water	Physical contamination • Ash • Mud	 Soil erosion Flood waters (high turbidity and colour) Bush fires 	Moderate	Possible	Medium (9)	 Catchment group education programs Treatment processes – clarifier, flocculants, sand filters Public notification process (boil water alert) 	Moderate	Rare	Low (3)	Confident	Occasional flooding of Burnett, Boyne and Auburn Rivers can't be avoided.	
8	Source water	Lack of supply	 Inadequate maintenance Power Failure Damage to river intake structure pipework and pumps caused by flood waters Blockage of intake structure 	Moderate	Unlikely	Medium (6)	 Estimated one week's supply of treated water in reservoirs. Standby pump installed Option: Audit of all pumps has been carried out and one spare pump for each make and model will be purchased. 	Insignificant	Unlikely	Low (2)	Confident	Existing measures are robust	
9	Source water	Lack of supply	1. Climatic variations	Moderate	Unlikely	Medium (6)	1. Importing water	Minor	Rare	Low (2)	Uncertain	Inability to predict when it will rain next	

				M	aximum Risk				Residual risk			
No.	Scheme Component	Hazard	Hazard Source	Consequence	Likelihood	Risk level	Existing Preventive Measures / Barriers.	Consequence	Likelihood	Risk level	Uncertainty	
							2. Drought management Plan actions: restrictions, communication etc.					
10	Treatment	Biological contamination • Bacteria • Viruses	 Failure of chlorine injection Insufficient chlorine residual Loss of Chemical supplies Staff error Plant Design 	Major	Possible	High (12)	 Treatment processes and Chlorine disinfection post filters and leaving Ground reservoir Chlorine levels are tested once per day. Injection pump and chlorine supply are also checked and inspected at the same time. Public notification process (boil water alert) Trained and qualified operators – good housekeeping Security and vermin-proofing Regular cleaning and maintenance of process equipment Mundubbera 2018-01: Changes to flow are manually conducted seasonally and chemical dosing is adjusted accordingly 	Major	Rare	Medium (5)	Uncertain	Online chlorine ana and linked to plant
11	Treatment	Biological contamination • Protozoa	 Cross contamination Vermin and bird access Staff error Plant Design 	Catastrophic	Rare	Medium (6)	 Security and vermin-proofing Treatment processes, flocculation, clarifier, oxidisation Chemical injection levels are tested once per day. Dosing equipment is checked once per day. Trained and qualified operators – good housekeeping 	Catastrophic	Rare	Medium (6)	Uncertain	Inability to detect of process Raw and treated wareviewed to ensure data to provide con
12	Treatment	Chemical contamination	 Chemical overdose due to equipment failure. Loss of Chemical supplies Communication Breakdown (alarms) Staff error 	Moderate	Unlikely	Medium (6)	 Treatment processes, flocculation, clarifier, oxidisation and filtration Chemical injection levels are tested once per day. Dosing equipment is checked once per day. Trained and qualified operators On-line analyser installed and alarmed to SCADA. 	Moderate	Rare	Low (3)	Uncertain	Chlorine injection is There is a possibility continued chlorine pool will be carried system causing pos
13	Treatment	Disinfection by-products	 High raw water turbidity (dependent on nature of turbidity) Plant Design 	Major	Rare	Medium (5)	 Degeneration of sodium hypochlorite unlikely due to relatively small storage capacity which requires monthly refilling. Staff aware of potential issues and refill fortnightly if possible Mundubbera 2018-02: THM monitoring occurs monthly 	Major	Rare	Medium (5)	Confident	THM monitoring ha ADWG limits.

Page **224** of **323**

Comments	Possible and Proposed Further Risk Reduction Actions (Risk Management Improvement Plan Actions)
e analyser installed and alarmed to SCADA plant shut down.	
tect contamination in the treatment ted water monitoring program was ensure its efficacy in providing sufficient de confidence in the risk categorisations	Seek funding to install UV unit to meet HBTs.
tion is triggered by raw water pump start. sibility that pump failure could result in orine injection. Once pumping re-starts this arried forward through the reticulation g possible overdose.	
ing have commenced. All results are below	

				Ma	aximum Risk				Residual risk				Possible and
No	Scheme Component	Hazard	Hazard Source	Consequence	Likelihood	Existing Preventive Measures , Risk Barriers. level		Consequence	Likelihood	Risk level	Uncertainty	Comments	Proposed Further Risk Reduction Actions (Risk Management Improvement Plan Actions)
14	Treatment	Physical/chemical contamination • Turbidity • Manganese • Particulates	 Failure of back-wash of sand filters Failure of dosing equipment or clarifier. High levels of Manganese or turbidity. Communication Breakdown Staff error 	Minor	Likely	Medium (8)	 Treatment processes, flocculation, clarifier, oxidisation, filtration Operation of filters and clarifier monitored daily. Trained and qualified operators – good housekeeping 	Minor	Unlikely	Low (4)	Confident	Existing measures are robust	
15	Treatment	Ground reservoir pump failure	 Inadequate maintenance/lack of standby pumps Communication Breakdown 	Moderate	Unlikely	Medium (6)	 Estimated one day of treated water supply in high tower reservoir. Standby pump installed. Mobile back-up generator located at Works Depot. 	Moderate	Rare	Low (3)	Confident	Existing measures are robust	

11.5 Mundubbera Risk Management Measures

Table 11-7 Mundubbera Existing and Proposed Preventative Measures

No.	Scheme Component	Hazard	Hazard Source	What are the existing preventative measures?	Do existing preventative measures impact on likelihood &/or consequence?	How effective is/are the existing preventative measure/s & on what basis has this been determined?	Residual risk after preventative measures	Is the level of residual risk acceptable	Proposed measures to reach an acceptable level or residual risk	Responsible Work Unit/ Organisation (& arrangements with external organisation if applicable)
1	Source water	Biological contamination • Protozoa	1. Livestock 2. Wildlife 3. Issues with Bore Infiltration 4. Septic systems/sewag e 5. Recreation	1. Coagulation, clarification, and dual filtration followed by disinfection	Likelihood	Unknown	Medium (6)	Yes		
2	Source water	Biological contamination • Bacteria • Viruses	 Livestock Wildlife Issues with Bore Infiltration Septic Systems/sewag Recreation 	 Coagulation, clarification, and dual filtration followed by disinfection Catchment group education programs 	Likelihood	Unknown	Medium (6)	Yes		
3	Source water	Chemical contamination • Heavy metals: Arsenic	 Natural arsenic and other chemicals in water 	 Treatment processes, flocculation, clarifier, oxidisation, and filtration 	Likelihood	Unknown	Medium (5)	Yes		
4	Source water	Chemical contamination • Nutrients: Nitrate	1. Pesticides and Fertilisers	 Treatment processes, flocculation, clarifier, oxidisation, and filtration 	Likelihood	Unknown	Low (4)	Yes		

Drinking Water Quality Management Plan

No.	Scheme Component	Hazard	Hazard Source	What are the existing preventative measures?	Do existing preventative measures impact on likelihood &/or consequence?	How effective is/are the existing preventative measure/s & on what basis has this been determined?	Residual risk after preventative measures	Is the level of residual risk acceptable	Proposed measures to reach an acceptable level or residual risk	Responsible Work Unit/ Organisation (& arrangements with external organisation if applicable)
		 Anions: Sulphate, Fluoride 	2. Natural occurrences of anions							
5	Source water	Chemical contamination • General metals: Aluminium, Iron, Manganese, Boron, Copper	 Pesticides and Fertilisers Natural chemicals in water 	 Treatment processes, flocculation, clarifier, oxidisation, and filtration 	Likelihood	Unknown	Low (3)	Yes		
6	Source water	Chemical contamination	1. Accidental spills	 Detection and dilution during treatment processes and storage Emergency response Public notification process (do not drink alert) 	Consequence	Unknown	Low (1)	Yes		
7	Source water	Physical contamination • Ash • Mud	 Soil erosion Flood waters (high turbidity and colour) Bush fires 	 Catchment group education programs Treatment processes – clarifier, flocculants, sand filters Public notification process (boil water alert) 	Likelihood	Unknown	Low (3)	Yes		
8	Source water	Lack of supply	 Inadequate maintenance Power failure 	 Estimated one week's supply of treated water in reservoirs. 	Likelihood	Effective backups and history	Low (2)	Yes		

No.	Scheme Component	Hazard	Hazard Source	What are the existing preventative measures?	Do existing preventative measures impact on likelihood &/or consequence?	How effective is/are the existing preventative measure/s & on what basis has this been determined?	Residual risk after preventative measures	ls the level of residual risk acceptable	Proposed measures to reach an acceptable level or residual risk	Responsible Work Unit/ Organisation (& arrangements with external organisation if applicable)
			 Damage to river intake structure pipework and pumps caused by flood waters Blockage of intake structure 	 Standby pump installed Option: Audit of all pumps has been carried out and one spare pump for each make and model will be purchased. 						
9	Source water	Lack of supply	1. Climatic variations	 Importing water Drought management Plan actions: restrictions, communication etc. 	Likelihood & Consequence	Effective- reliable supply	Low (2)	Yes		
10	Treatment	Biological contamination • Bacteria • Viruses	 Failure of chlorine injection Insufficient chlorine residual Loss of Chemical supplies Staff error Plant Design 	 Treatment processes and Chlorine disinfection post filters and leaving Ground reservoir Chlorine levels are tested once per day. Injection pump and chlorine supply are also checked and inspected at the same time. Public notification process (boil water alert) Trained and qualified operators – good housekeeping Security and vermin- proofing 	Likelihood	Effective –online analysers provide updated chlorine levels.	Medium (5)	Yes		

No.	Scheme Component	Hazard	Hazard Source	What are the existing preventative measures?	Do existing preventative measures impact on likelihood &/or consequence?	How effective is/are the existing preventative measure/s & on what basis has this been determined?	Residual risk after preventative measures	Is the level of residual risk acceptable	Proposed measures to reach an acceptable level or residual risk	Responsible Work Unit/ Organisation (& arrangements with external organisation if applicable)
				7. Regular cleaning and maintenance of process equipment Mundubbera 2018-01: Changes to flow are manually conducted seasonally and chemical dosing is adjusted accordingly						
11	Treatment	Biological contamination • Protozoa	 Cross contamination Vermin and bird access Staff Error Plant Design 	 Security and vermin- proofing Treatment processes, flocculation, clarifier, oxidisation Chemical injection levels are tested once per day. Dosing equipment is checked once per day. Trained and qualified operators – good housekeeping 	No	Inability to detect contamination in the treatment process	Medium (6)	Yes	Seek funding to install UV unit .	Water and Wastewater
12	Treatment	Chemical contamination	 Chemical overdose due to equipment failure. Loss of Chemical supplies 	 Treatment processes, flocculation, clarifier, oxidisation and filtration Chemical injection levels are tested once per day. Dosing equipment is checked once per day. 	Likelihood	Effective- based on there being no instance of overdose yet.	Low (3)	Yes		

No.	Scheme Component	Hazard	Hazard Source	What are the existing preventative measures?	Do existing preventative measures impact on likelihood &/or consequence?	How effective is/are the existing preventative measure/s & on what basis has this been determined?	Residual risk after preventative measures	Is the level of residual risk acceptable	Proposed measures to reach an acceptable level or residual risk	Responsible Work Unit/ Organisation (& arrangements with external organisation if applicable)
			 Communicatio n Breakdown (alarms) Staff error 	 4. Trained and qualified operators 5. On-line analyser installed and alarmed to SCADA. 						
13	Treatment	Disinfection by- products	 High raw water turbidity (dependent on nature of turbidity) Plant Design 	 Degeneration of sodium hypochlorite unlikely due to relatively small storage capacity which requires monthly refilling. Staff aware of potential issues and refill fortnightly if possible Mundubbera 2018-02: THM monitoring occurs monthly 	No	No THM exceedances recorded in treated water	Medium (5)	Yes		
14	Treatment	Physical/chemical contamination • Turbidity • Manganese • Particulates	 Failure of back- wash of sand filters Failure of dosing equipment or clarifier. High levels of Manganese or turbidity. 	 Treatment processes, flocculation, clarifier, oxidisation, filtration Operation of filters and clarifier monitored daily. Trained and qualified operators – good housekeeping 	Likelihood	Effective – based on water quality testing	Low (4)	Yes		

No.	Scheme Component	Hazard	Hazard Source	What are the existing preventative measures?	Do existing preventative measures impact on likelihood &/or consequence?	How effective is/are the existing preventative measure/s & on what basis has this been determined?	Residual risk after preventative measures	Is the level of residual risk acceptable	Proposed measures to reach an acceptable level or residual risk	Responsible Work Unit/ Organisation (& arrangements with external organisation if applicable)
			 Communicatio n Breakdown Staff error 							
15	Treatment	Clearwater reservoir pump failure	 Inadequate maintenance/l ack of standby pumps Communication Breakdown 	 Estimated one day of treated water supply in high tower reservoir. Standby pump installed. Mobile back-up generator located at Works Depot. 	Likelihood	Effective- multiple backups	Low (3)	Yes		
16	Treatment	Substandard chemicals	1. Inappropriate chemical storage or defective batch	1. Coagulation, clarification, and dual filtration followed by disinfection	Consequence	Moderately effective- based on treatment results	Low (1)	Yes		

11.6 Mundubbera Risk Management Improvement Program

Table 11-8 Mundubbera Risk Improvement Program

Risk	Selvere Company / Selv	lise and fille and and			Risk li	nprovement Actions	Taurat	Target Estimated		
No.	Scheme Component / Sub- component	Hazard/ Hazardous event	Priority	interim	short- term	long-term	dates	cost	Responsibility	
11	Treatment	Biological contamination Protozoa 	Medium			Seek funding for installation of a UV unit	30/12/2025	\$100k EACH \$15k OP	Water and Wastewater	

11.7 Mundubbera Water Scheme Water Quality Data

The results are spread across the twelve-month period of the year indicated. Note the orange lines indicate the ADWG limits.

Mundubbera untreated bore water 2010-2018

Revision 7.1

Mundubbera treated water 2010-2018

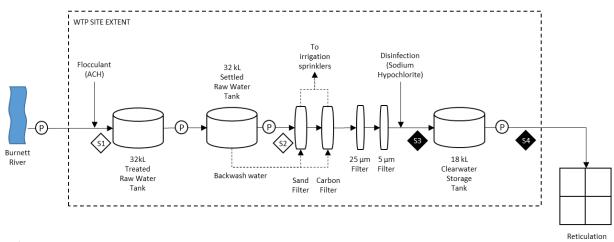
12. PARADISE DAM CARAVAN PARK WATER SUPPLY SCHEME

12.1 Details of Infrastructure for Providing the Service

Source Water

Paradise Dam Water Supply Scheme provides potable water to the Caravan Park and campgrounds,.

Source water at Paradise Dam is the Burnett River adjacent to the campgrounds at the base of the Paradise Dam wall. The intake infrastructure consists of a submersible pump on floating pontoon secured in place. A 50mm PE pipe supplies the WTP from this pump.


During flood events, the raw water quality can be highly turbid and coloured, and the treatment plant does not have the capacity to treat this. During these times, water extraction from the Burnett River is suspended and potable water is carted in by a certified water carrier. This water is put through the WTP and re-treated prior to supply into the reticulation if a certified carrier is not available.

Treatment Process

The raw water is pumped to the treatment plant The designed flow rate to the WTP is 72 kL/d. The treatment plant can process a continuous maximum supply of 1L/s, subject to raw water quality parameters falling within acceptable range. Paradise Dam's average usage is approximately 4kL/d.

This plant consists of a raw water tank, a settled water tank, a sand filter, a carbon filter, two bag filters (25 micron and 5 micron) and a clearwater storage tank. ACH is dosed prior to the raw water tank and sodium hypochlorite is dosed prior to the clearwater storage tank. Pumping of water through the treatment plant is triggered by the floats in each of the tanks reaching a set low water level. Once each tank reaches the set high water level, the float triggers a switch that stops the pumps. A schematic of the plant is shown in Figure 12-1.

Due to the low water usage at this site, raw water tank has sufficient residence time for the flocs to settle out.

PARADISE DAM

Sampling Locations

S1 – Colour, turbidity and pH - weekly S2 – Colour, turbidity and pH - weekly

- S3 Colour, turbidity, pH and free chlorine weekly (CCP)
- S4 Free chlorine and pH weekly (CCP)

Figure 12-1 Paradise Dam WTP Schematic

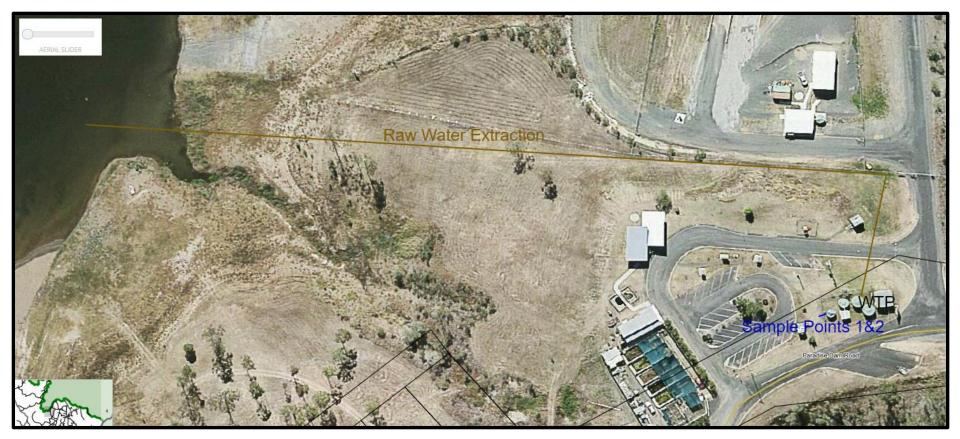


Figure 12-2 Paradise Dam Water Supply Map

Revision 7

Table 12-1 Infrastructure Details – Paradise Dam Water Supply Scheme

	Component	Scheme			
	Name	Burnett River			
	Туре	River			
Sources	% of supply	100%			
	Reliability	High			
	Water quality issues	Turbidity, colour and high pH			
	Туре	Pumped			
		Pump Capacity = 1 L/s at 40m head			
Sourcing Infrastructure	Description	Davey Pump 1.1kW submersible bore pump			
		Installed = Nov 2013			
	Ownership	NBRC			
Are there any sources that do not undergo treatment prior to supply?	Νο				
	Name	Paradise Dam WTP			
	Process	Coagulation, clarification, sand filtration, carbon filtration, bag filtration, chlorination			
	Design Capacity (20 hr operation)	72 kL/d			
	Daily flow range	4 kL/d			
Paradise Dam WTP	Chemicals added	Sodium hypochlorite ACH			
	Standby chemical dosing facilities (Y/N)	Ν			
	Water sourced from and %	River 100%			
	% of average day demand provided	100%			

	Component	Scheme
	% of scheme supply Distribution area supplied	100%
	Bypasses / Variations	No
	Location	Reservoir
	Туре	Liquid sodium hypochlorite via Grunfos dosing pump
	Dose rate	0.9 – 1.5 L/h
Disinfortion	Target residual levels	0.5 mg/L
Disinfection	Duty/standby	No
	Dosing arrangements	Fixed
	Alarms	Nil
	Auto shut-off arrangements	Nil
	Name	Ground Reservoir
	Capacity (ML)	0.018 ML
Reservoir	Roofed (Y/N)	Υ
	Vermin-proof (Y/N)	Υ
	Runoff directed off roof (Y/N)	γ

12.2 Paradise Dam Quality: Identifying Hazards and Hazardous Events

Water quality information has been collected by NBRC for raw water and treated water since January 2016 and data summarised here includes results up to October 2018. Analysis of this data has been completed to assess the results in comparison to the ADWG guideline values for parameters measured. It is noted that no SunWater water quality data was reviewed for raw water.

A summary of the water analysis undertaken for the Paradise Dam Caravan Park Water Supply Scheme is contained in Table 12-2, Table 12-3 and

Table 12-4. Section 12.7 includes graphs of sampling data.

For raw water and treated water the following parameters have been measured monthly:

- Conductivity
- pH
- Total & temporary hardness
- Alkalinity (including residual)
- Silica
- Total dissolved ions
- Total dissolved solids
- True colour
- Turbidity
- Saturation index
- Chlorine residual
- Total coliform
- E. coli
- Mole ratio

- Sodium absorption ratio
- Figure of merit ratio
- Cations (sodium, potassium, calcium, magnesium, and hydrogen)
- Anions (bicarbonate, carbonate, hydroxide, chloride, fluoride, nitrate, sulphate)
- Dissolved metals (iron, manganese, zinc, boron, copper, aluminium)
- Total metals (aluminium, arsenic, cadmium, chromium, copper, iron, lead, manganese, nickel, zinc)
- THM

Interpretation

Over the period of testing, the approximate frequency of sampling for Paradise Dam is once a month for both raw water and for treated water.

For samples taken from the Paradise Dam WTP, there has been no occurrences of any parameters exceeding the guideline value.

Table 12-2 Paradise Dam Raw Water Source

	Paradise Dam – raw water											
Parameter					Summary of results							
(mg/L unless otherwise specified)	Sampling location	Time period	No of samples	Maximum value	Average value	Minimum value	Comments					
Turbidity (NTU)	River	Feb 2015 – Sep 2018	28	69	15.17	1						
Fluoride	River	Feb 2015 – Sep 2018	28	56	2.11	0.08						
Nitrate	River	Feb 2015 – Sep 2018	28	1.8	0.76	0.5						
Sulfate	River	Feb 2015 – Sep 2018	28	11	8.66	6						
pH (pH units)	River	Feb 2016 – Oct 2018	22	8.0	7.6	7.1						
Total coliform (mpn/100mL)	River	Feb 2016 – Oct 2018	24	>2400	1453	110						
<i>E. coli</i> (mpn/100mL)	River	Feb 2016 – Oct 2018	24	5	1.3	0						
Dissolved metals			·	·								
Aluminium	River	Feb 2015 – Sep 2018	28	0.27	0.08	0.05						
Boron	River	Feb 2015 – Sep 2018	28	0.05	0.03	0.03						
Copper	River	Feb 2015 – Sep 2018	28	<0.03	<0.03	<0.03	All values below limit of reporting					
Iron	River	Feb 2015 – Sep 2018	28	0.26	0.06	0.01						
Manganese	River	Feb 2015 – Sep 2018	28	0.1	0.01	0.01						
Zinc	River	Feb 2015 – Sep 2018	28	0.51	0.03	0.01						
Total metals	1	1	1	1	L	1						

Drinking Water Quality Management Plan

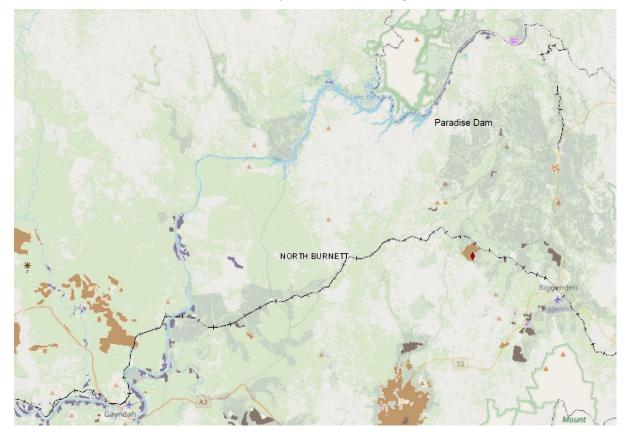
			Paradi	se Dam – raw water			
Parameter					Summary of results		
(mg/L unless otherwise specified)	Sampling location	Time period	No of samples	Maximum value	Average value	Minimum value	Comments
Aluminium	Raw water tank tap	Nov 2017 – Oct 2018	5	1.7	0.42	0.004	
Arsenic	Raw water tank tap	Nov 2017 – Oct 2018	5	0.0022	0.0014	0.0002	
Cadmium	Raw water tank tap	Nov 2017 – Oct 2018	5	<0.0001	<0.0001	<0.0001	All samples taken were <0.0001 mg/L
Chromium	Raw water tank tap	Nov 2017 – Oct 2018	5	0.0016	0.0005	<0.0001	
Copper	Raw water tank tap	Nov 2017 – Oct 2018	5	0.011	0.0062	<0.001	
Iron	Raw water tank tap	Nov 2017 – Oct 2018	5	1.9	0.52	<0.005	
Lead	Raw water tank tap	Nov 2017 – Oct 2018	5	0.0011	0.0004	<0.0001	
Manganese	Raw water tank tap	Nov 2017 – Oct 2018	5	0.052	0.029	0.0008	
Nickel	Raw water tank tap	Nov 2017 – Oct 2018	5	0.003	0.0015	0.0005	
Zinc	Raw water tank tap	Nov 2017 – Oct 2018	5	0.013	0.0076	0.001	

Table 12-3 Paradise Dam Treated Water

Plant				P	aradise Dam	n – Treated Wat	er		
				Su	mmary of re	sults	Australian	No of samples	Comment
Parameter (mg/L unless otherwise specified)	Sampling location	Time Period	No of samples taken in time period	Maximum Value	Average Value	Minimum Value	Drinking Water Guidelines guideline value for health unless otherwise specified	exceeding Australian Drinking Water Guidelines guideline value	
Turbidity (NTU)	WTP	Feb 2015 – Sep 2018	28	<1	<1	<1	5	0	Aesthetic guideline only All values below limit of reporting (<1)
Fluoride	WTP	Feb 2015 – Sep 2018	28	0.16	0.08	0.05	1.5	0	
Nitrate	WTP	Feb 2015 – Sep 2018	28	2	0.68	0.05	50	0	Aesthetic guideline only
Sulfate	WTP	Feb 2015 – Sep 2018	28	10.4	8.14	6	250	0	Aesthetic guideline only
pH (pH units)	WTP	Feb 2016 – Oct 2018	23	8.05	7.58	7.15	6.5-8.5	0	Aesthetic guideline only
Disinfection residual	WTP	Feb 2016 – Oct 2018	17	3.2	1.0	0.05	0.2 - 0.5	0	Guideline value is from the World Health Organization's Guidelines for Drinking-water Quality 4 th edition
Total coliform (mpn/100mL)	WTP	Feb 2016 – Oct 2018	25	0	0	0	NA	NA	
<i>E. coli</i> (mpn/100mL)	WTP	Feb 2016 – Oct 2018	25	0	0	0	None detected	0	
Dissolved metals			•	•		•	•	•	
Aluminium	WTP	Feb 2015 – Sep 2018	28	<0.05	<0.05	<0.05	0.1	0	Although 0.2mg/L is the aesthetic guideline value, <0.1 mg/L is desirable All values below limit of reporting

Plant		Paradise Dam – Treated Water											
				Su	mmary of re	sults	Australian	No of samples	Comment				
Parameter (mg/L unless otherwise specified)	Sampling location	Time Period	No of samples taken in time period	Maximum Value	Average Value	Minimum Value	Drinking Water Guidelines guideline value for health unless otherwise specified	exceeding Australian Drinking Water Guidelines guideline value					
Boron	WTP	Feb 2015 – Sep 2018	28	0.05	0.03	0.03	1	0	Although 4mg/L is the health guideline value, concentrations in uncontaminated sources is usually <1 mg/L Most samples below detection limit				
Copper	WTP	Feb 2015 – Sep 2018	28	0.05	0.03	0.03	2 (1)	0	Number in brackets denotes the aesthetic guideline value				
Iron	WTP	Feb 2015 – Sep 2018	28	0.01	0.01	0.01	0.3	0	Aesthetic guideline only 96% of values below limit of reporting				
Manganese	WTP	Feb 2015 – Sep 2018	28	<0.01	<0.01	<0.01	0.5 (0.1)	0	Number in brackets denotes the aesthetic guideline value All values below limit of reporting				
Zinc	WTP	Feb 2015 – Sep 2018	28	0.53	0.03	0.03	3	0					
Total metals													
Aluminium	WTP tap	Nov 2017 – October 2018	5	0.043	0.03	0.011	0.2	0	Aesthetic guideline only				
Arsenic	WTP tap	Nov 2017 – October 2018	5	0.0006	0.0005	0.0004	0.01	0					
Cadmium	WTP tap	Nov 2017 – October 2018	5	<0.0001	<0.0001	<0.0001	0.002	0	All samples were <0.0001 mg/L				

Plant		Paradise Dam – Treated Water										
				Su	mmary of re	sults	Australian	No of samples	Comment			
Parameter (mg/L unless otherwise specified)	Sampling location	Time Period	No of samples taken in time period	Maximum Value	Average Value	Minimum Value	Drinking Water Guidelines guideline value for health unless otherwise specified	exceeding Australian Drinking Water Guidelines guideline value				
Chromium	WTP tap	Nov 2017 – October 2018	5	<0.0001	<0.0001	<0.0001	0.05	0	All samples were <0.0001 mg/L			
Copper	WTP tap	Nov 2017 – October 2018	5	0.003	0.0024	0.002	2 (1)	0	Number in brackets denotes the aesthetic guideline value			
Iron	WTP tap	Nov 2017 – October 2018	5	0.016	0.0094	<0.005	0.3	0	Aesthetic guideline only			
Lead	WTP tap	Nov 2017 – October 2018	5	0.0003	0.0002	<0.0001	0.01	0				
Manganese	WTP tap	Nov 2017 – October 2018	5	0.0012	0.0007	<0.0001	0.5 (0.1)	0	Number in brackets denotes the aesthetic guideline value			
Nickel	WTP tap	Nov 2017 – October 2018	5	0.008	0.002	0.0007	0.02	0				
Zinc	WTP tap	Nov 2017 – October 2018	5	0.018	0.01	0.005	3	0	Aesthetic guideline only			
Trihalomethanes	WTP tap	Jan 2018 – Oct 2018	4	0.21	0.13	0.071	0.25	0				


Table 12-4 Paradise Dam Water Quality Complaints

Year	No of Water Quality Complaints	Water Quality Complaints per 1000 Connections	Main Reasons for Complaints	Likely Sources / Causes of Problems	Resolution of Problem
20-1-2016					
to	0	0			
26-10-2018					

12.3 Paradise Dam Catchment Characteristics

The catchment for Paradise Dam's potable water source includes all the Burnett River and its tributaries to the north of the town. The topography of this large area includes hilly and undulating natural forest areas, river, and creek flats.

Land use within this area is varied and includes extensive irrigated citrus orchids, forestry, National Parks, cropping and cattle grazing. The citrus growing area extends primarily from the north of the town through to Mundubbera and continues along the Burnett to Eidsvold. Paradise Dam is thus downstream of most of the economic activity within the NBRC region.

Legend:

- Local government areas State electoral boundaries Livestock processing
 - ★ export cattle abattoirs
 - egg processors
 - pig abattoir
 - poultry abattoirs
 - Cotton gins
- Ourrent sugar mills
- Airports

- → Railways
- Current saw mills plantation timber
- Current saw mills native timber
- Current sheep feedlots
- Current poultry farms
- Current piggeries
- Current cattle feedlots
- Current land based aquaculture

© The State of Queensland. 2018 Imagery courtesy of ESRI World Imagery (c) ESRI 2014, MDS Basemap is copyright Map Data 2011 MapData Services Pty Ltd (MDS), PSMA

Figure 12-3 Paradise Catchment Area

12.4 Paradise Dam Hazard Identification, Risk Assessment and Uncertainty

Table 12-5 Paradise Dam Hazard Identification, Risk Assessment and Uncertainty

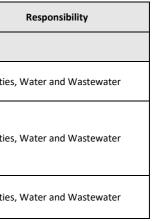
				Ma	aximum Risk			Residual risk					Possible and
No.	Scheme Component	Hazard	Hazard Source	Consequence	Likelihood	Risk level	Existing Preventive Measures / Barriers.	Consequence	Likelihood	Risk level	Level of Uncertainty	Comments	Proposed Further Risk Reduction Actions (Risk Management Improvement Plan Actions)
1	Source water	Biological contamination • Protozoa	 Livestock Wildlife Issues with Bore Infiltration Septic systems/sewage Recreation 	Catastrophic	Possible	High (15)	1. WTP process includes flocculation, clarification and filtration	Catastrophic	Unlikely	High (10)	Confident	Likelihood categories based on <i>E. coli</i> results from 2016. Based on available data, no <i>E. coli</i> detection has been experienced since 2015 (i.e. 'Rare' likelihood). However, this is only 2 years' worth of data and therefore, the likelihood was increased to 'Unlikely'. Water carting to site is available if water quality is not suitable.	Seek funding to install UV and SCADA/Close site
2	Source water	Biological contamination • Bacteria • Viruses	1. Livestock 2. Wildlife 3. Issues with Bore Infiltration 4. Septic Systems/sewage 5. Recreation	Catastrophic	Unlikely	High (10)	1. WTP process includes flocculation, some clarification, filtration, and chlorine disinfection.	Catastrophic	Rare	Medium (6)	Confident	Likelihood categories based on E. coli results from 2016. Based on available data, no E. coli detection has been experienced since 2015 (i.e. 'Rare' likelihood). However, this is only 2 years' worth of data and therefore, the likelihood was increased to 'Unlikely'. Water carting to site is available if water quality is not suitable.	Seek funding to install UV and SCADA/Close site
3	Source water	Chemical contamination • Heavy metals	1. Natural heavy metals and other chemicals in water	Moderate	Unlikely	Medium (6)	1. WTP process includes flocculation, some clarification, filtration.	Moderate	Rare	Low (3	Confident	Heavy metals and pesticides testing of the raw water at Paradise Dam commenced Nov 2017.	
4	Source water	Chemical contamination • Nutrients: Nitrate • Anions: Sulphate, Fluoride	 Pesticides and Fertilisers Natural occurrences of anions 	Moderate	Unlikely	Medium (6)	1. WTP process includes flocculation, some clarification, filtration and chlorine disinfection.	Moderate	Rare	Low (3)	Confident	Based on monthly water quality data. No exceedances since 2016.	
5	Source water	Chemical contamination • General metals: Aluminium, Iron, Manganese, Boron, Copper	 Pesticides and Fertilisers Natural chemicals in water 	Moderate	Unlikely	Medium (6)	 WTP process includes flocculation, some clarification, filtration and chlorine disinfection. 3-monthly clean of all tanks or more frequently based on water quality results 	Moderate	Rare	Low (3)	Confident	Based on monthly water quality data.	
6	Source water	Chemical contamination	1. Accidental spills	Moderate	Rare	Low (3)	1. WTP process includes flocculation, some clarification, filtration.	Insignificant	Rare	Low (1)	Uncertain	Small concentration. Only risk of any real consequence would be a chemical spill near the intake (ie fuel for boats, raw sewage leak from motor homes). Inability to predict type or consistency of possible spill.	
7	Source water	Physical contamination • Ash • Mud	 Soil erosion Flood waters (high turbidity and colour) Bush fires 	Minor	Possible	Medium (6)	 WTP process includes flocculation, some clarification, filtration, and chlorine disinfection. Water carting to site 	Minor	Unlikely	Low (4)	Confident	Occasional flooding of Burnett River cannot be avoided. Site is closed during flood events. Water carting is available if required.	

				Maximum Risk					Residual ris	k			Possible and
No.	Scheme Component	Hazard	Hazard Source	Consequence	Likelihood	Risk level	Existing Preventive Measures / Barriers.	Consequence	Likelihood	Risk level	Level of Uncertainty	Comments	Proposed Further Risk Reduction Actions (Risk Management Improvement Plan Actions)
8	Source water	Lack of supply	 Inadequate maintenance Lack or failure of standby pumps Power failure Blockage of intake structure 	Moderate	Unlikely	Medium (6)	 In case of power failure, there is approx. 2 days' worth of clearwater storage for potable water. Worst case scenario, the campers are suggested to vacate. Cart water 	Moderate	Rare	Low (3)	Estimate		
9	Source water	Lack of supply	Climatic variations	Moderate	Unlikely	Medium (6)	1. Cart water	Moderate	Rare	Low (3)	Uncertain	Uncertainty in future climate	
10	Treatment	Biological contamination • Bacteria • Viruses	 Failure of chlorine injection Insufficient chlorine residual Loss of Chemical supplies Staff error Plant Design 	Major	Possible	High (12)	 Treatment processes – Chlorine disinfection post filtration Chlorine levels are tested at least once a week (ideally twice a week) Injection pumps and chlorine supply are also checked and inspected at the same time. Trained and qualified operators – good housekeeping Security and vermin-proofing Regular cleaning and maintenance of process equipment 	Major	Unlikely	Medium (8)	Reliable		Seek funding to install UV and SCADA/Close site
11	Treatment	Biological contamination • Protozoa	 Vermin and bird access Staff error Plant Design 	Catastrophic	Rare	Medium (6)	 Security and vermin-proofing Filtration (limited efficacy) Trained and qualified operators – good housekeeping 	Catastrophic	Rare	Medium (6)	Uncertain	Inability to detect contamination in the treatment process. Informal visual inspections of the tanks occur periodically.	Seek funding to install UV and SCADA/Close site
12	Treatment	Chemical contamination • ACH	 Chemical overdose due to equipment failure Loss of chemical supplies Staff error Plant Design 	Minor	Unlikely	Low (4)	 Injection pumps and ACH supply are also checked and inspected at least once a week. Trained and qualified operators – good housekeeping 	Minor	Rare	Low (2)	Uncertain		Seek funding to install UV and SCADA/Close site
13	Treatment	Disinfection by- products	 High raw water turbidity (dependent on nature of turbidity) Failure of ACH dosing Failure of filtration system 	Major	Rare	Medium (5)	 Treatment plant is designed to remove turbidity under normal raw water quality conditions In the event of highly turbid/coloured water, treatment plant would be suspended and water carted in Regular maintenance of filter media and bag filters Paradise Dam 2018-01: THM monitoring occurs monthly 	Major	Rare	Medium (5)	Confident	THM monitoring have commenced. All results are below ADWG limits.	

				Maximum Risk				Residual risk					Possible and
No.	Scheme Component	Hazard	Hazard Source	Consequence	Likelihood	Risk level	Existing Preventive Measures / Barriers.	Consequence	Likelihood	Risk level	Level of Uncertainty	Comments	Proposed Further Risk Reduction Actions (Risk Management Improvement Plan Actions)
14	Treatment	Physical/chemical contamination • Turbidity • Particulates	 Failure of filtration system Failure of dosing equipment High levels of turbidity Communication Breakdown Staff error 	Minor	Likely	Medium (8)	 Regular maintenance of filter media and bag filters In the event of highly turbid/coloured water, treatment plant would be suspended and water carted in Trained and qualified operators – good housekeeping 	Minor	Unlikely	Low (4)	Confident	Existing measures are robust	
15	Treatment	Clearwater storage tank pump failure	 Inadequate maintenance Power failure Communication Breakdown 	Moderate	Unlikely	Medium (6)	 Standby pump available If there is a power failure, the backup generator can run the treated water pump to supply the whole site. Cart water in if required 	Moderate	Rare	Low (3)	Confident	Existing measures are robust	

12.5 Paradise Dam Risk Management Measures

Table 12-6 Existing and Proposed Preventative Measures


No.	Scheme Component	Hazard	Hazard Source	What are the existing preventative measures?	Do existing preventative measures impact on likelihood &/or consequence?	How effective is/are the existing preventative measure/s & on what basis has this been determined?	Residual risk after preventative measures	Is the level of residual risk acceptable	Proposed measures to reach an acceptable level or residual risk	Responsible Work Unit/ Organisation (& arrangements with external organisation if applicable)
1	Source water	Biological contaminationProtozoa	 Livestock Wildlife Issues with Bore Infiltration Septic systems/sewage Recreation 	1. WTP process includes flocculation, clarification and filtration	Likelihood	Effective	High (10)	No	Seek funding to install UV and SCADA/Close site	Facilities, Water and Wastewater
2	Source water	Biological contaminationBacteriaViruses	 Livestock Wildlife Issues with Bore Infiltration Septic Systems/sewage Recreation 	1. WTP process includes flocculation, some clarification, filtration, and chlorine disinfection.	Likelihood	Effective	Medium (6)	Yes	Seek funding to install UV and SCADA/Close site	Facilities, Water and Wastewater
3	Source water	Chemical contamination Heavy metals 	1. Natural heavy metals and other chemicals in water	1. WTP process includes flocculation, some clarification, filtration.	Likelihood	Effective based on recent data	Low (3	Yes		
4	Source water	 Chemical contamination Nutrients: Nitrate Anions: Sulphate, Fluoride 	 Pesticides and Fertilisers Natural occurrences of anions 	1. WTP process includes flocculation, some clarification, filtration and chlorine disinfection.	Likelihood	Limited reduction based on data	Low (3)	Yes		
5	Source water	Chemical Contamination General metals: Aluminium, Iron, Manganese, Boron, Copper 	 Pesticides and Fertilisers Natural chemicals in water 	 WTP process includes flocculation, some clarification, filtration and chlorine disinfection. 3-monthly clean of all tanks or more frequently based on water quality results 	Likelihood	Uncertain as levels in raw water are already low	Low (3)	Yes		
6	Source water	Chemical contamination	1. Accidental spills	1. WTP process includes flocculation, some clarification, filtration.	Consequence	Uncertain	Low (1)	Yes		
7	Source water	Physical contamination Ash Mud	 Soil erosion Flood waters (high turbidity and colour) Bush fires 	 WTP process includes flocculation, some clarification, filtration, and chlorine disinfection. Water carting to site 	Likelihood	Effective	Low (4)	Yes		
8	Source water	Lack of supply	 River level drop beyond intake level Failure of intake pump Power failure Blockage of intake structure 	 In case of power failure, there is approx. 2 days' worth of clearwater storage for potable water. Worst case scenario, the campers are suggested to vacate. Cart water 	Likelihood	Effective	Low (3)	Yes		
9	Source water	Lack of supply	Climatic variations	1. Cart water	Likelihood	Effective	Low (3)	Yes		
10	Treatment	Biological contaminationBacteriaViruses	 Failure of chlorine injection Insufficient chlorine residual Loss of chemical supplies Staff error Plant Design 	 Treatment processes – Chlorine disinfection post filtration Chlorine levels are tested at least once a week (ideally twice a week) Injection pumps and chlorine supply are also checked and inspected at the same time. Trained and qualified operators – good housekeeping Security and vermin-proofing Regular cleaning and maintenance of process equipment 	Likelihood	Effective	Medium (8)	Yes	Seek funding to install UV and SCADA/Close site	Facilities, Water and Wastewater

No.	Scheme Component	Hazard	Hazard Source	What are the existing preventative measures?	Do existing preventative measures impact on likelihood &/or consequence?	How effective is/are the existing preventative measure/s & on what basis has this been determined?	Residual risk after preventative measures	Is the level of residual risk acceptable	Proposed measures to reach an acceptable level or residual risk	Responsible Work Unit/ Organisation (& arrangements with external organisation if applicable)
11	Treatment	Biological contaminationProtozoa	 Vermin and bird access Staff error Plant Design 	 Security and vermin-proofing Filtration (limited efficacy) Trained and qualified operators – good housekeeping 	No change	Uncertain	Medium (8)	Yes	Seek funding to install UV and SCADA/Close site	Facilities, Water and Wastewater
12	Treatment	Chemical contamination ACH 	 Chemical overdose due to equipment failure Loss of chemical supplies Staff error Plant Design 	 Injection pumps and ACH supply are also checked and inspected at least once a week. Trained and qualified operators – good housekeeping 	Likelihood	Effective	Low (2)	Yes	Seek funding to install SCADA/Close site	Facilities, Water and Wastewater
13	Treatment	Disinfection by-products	 High raw water turbidity (dependent on nature of turbidity) Failure of ACH dosing Failure of filtration system 	 Treatment plant is designed to remove turbidity under normal raw water quality conditions In the event of highly turbid/coloured water, treatment plant would be suspended and water carted in Regular maintenance of filter media and bag filters Paradise Dam 2018-01: THM monitoring occurs monthly 	No	Effective. No THM exceedances recorded in treated water.	Medium (6)	Yes		
14	Treatment	Physical/chemical contamination • Turbidity • Particulates	 Failure of filtration system Failure of dosing equipment High levels of turbidity Communication Breakdown Staff error 	 Regular maintenance of filter media and bag filters In the event of highly turbid/coloured water, treatment plant would be suspended, and water carted in Trained and qualified operators – good housekeeping 	Likelihood	Effective	Low (4)	Yes		
15	Treatment	Clearwater storage tank pump failure	 Inadequate maintenance Power failure Communication Breakdown 	 Standby pump available If there is a power failure, the backup generator can run the treated water pump to supply the whole site. Cart water in if required 	Likelihood	Effective	Low (2)	Yes		

12.6 Paradise Dam Risk Management Improvement Program

Table 12-7 Paradise Dam Risk Improvement Plan

Risk No.	Scheme Component	Hazard/ Hazardous event P		Risk Impro		Target dates	Estimated cost		
KISK NO.	/ Sub-component	Hazard/ Hazardous event	Priority	interim	short-term	long-term			
1&2	Source	Biological contamination Protozoa 	Medium	Seek funding to install UV and SCADA	Close site		November 2021		Facilities
10 & 11	Treatment	 Biological contamination Bacteria Viruses Protozoa 	Medium	Seek funding to install UV and SCADA	Close site		November 2021		Facilities
12	Treatment	Chemical contamination • ACH	Medium	Seek funding to install SCADA	Close site		November 2021		Facilities

12.7 Paradise Dam Water Scheme Water Quality Data

The results are spread across the twelve-month period of the year indicated. Note the orange lines indicate the ADWG limits.

Paradise Dam - Raw Water 2016 - 2018

Paradise Dam – Treated Water 2016 - 2018

13. REGION-WIDE OPERATIONS

Some operational procedures, quality issues and improvement opportunities are region-wide in nature and have been grouped here to limit repetition.

13.1 Regional Hazard Identification, Risk Assessment and Uncertainty

No.	Scheme Component	Hazard	Hazard Source		Maximum Risk	1	Existing Preventive Measures / Barriers.	Residual risk								Comments	Possible and Proposed Further Risk Reduction Actions (Risk Management Improvement Plan Actions)
				Consequence	Likelihood	Risk level		Consequence	Likelihood	Risk level							
1	Treatment	Substandard chemicals (eg. Chlorates)	1. Inappropriate chemical storage or defective batch	Catastrophic	Unlikely	Medium (8)	1. Chemicals stored as per regulation	Major	Rare	Medium (5)	Confident	Uncooperative chemical supplier with few alternatives	Require chemical quality document with each batch received from supplier Test each batch from supplier inhouse				
2	Reticulation	Biological contamination Protozoa	 Holes in reservoir roof allows access to vermin Lack of backflow prevention No disinfecting when repairing pipe breaks and leaks Staff error Works on/near reticulation 	Catastrophic	Unlikely	Medium (8)	 Backflow prevention devices fitted on all commercial carriers and/or commercial fill-points. Backflow prevention devices fitted to commercial industrial premises where required. Household meters have non-return valves built into them. Processes for working on network Only approved / qualified operators allowed to work on the network – hygiene procedures etc. Regular inspection and maintenance of tower reservoir Option: 6 monthly scheduled reservoir roof inspections has begun. 	Moderate	Rare	Low (3)	Confident	Existing measures are robust Residual consequence drops as less quantity of contaminant due to measures in place	Option: Develop procedure for disinfecting mains after repairs. WIOA procedures and Operators disinfection training required. Require Aquacard completion by all workers on and around Council water infrastructure				
3	Reticulation	Biological contamination • Bacteria • Viruses	 Holes in reservoir roof allows access to vermin Lack of backflow prevention No disinfecting when repairing pipe breaks and leaks Staff error Works on/near reticulation 	Catastrophic	Unlikely	Medium (8)	 Backflow prevention devices fitted on all commercial carriers and/or commercial fill-points. Backflow prevention devices fitted to commercial industrial premises where required. Household meters have non-return valves built into them. Processes for working on network Only approved / qualified operators allowed to work on the network – hygiene procedures etc. Regular inspection and maintenance of tower reservoir 	Moderate	Rare	Low (3)	Confident	Existing measures are robust Residual consequence drops as less quantity of contaminant due to measures in place	Option: Develop procedure for disinfecting mains after repairs. WIOA procedures and Operators disinfection training required. Require Aquacard completion by all workers on and around Council water infrastructure				
4	Reticulation	Biological contamination – opportunistic pathogen (Naegleria fowleri)	Growth in pipework under stagnant water conditions and warm temperatures	Major	Possible	High (12)	 Disinfection residual in reticulation Minimal dead ends Flushing of problem areas regularly 	Major	Rare	Medium (5)	Reliable	The conditions conducive to growth of opportunistic pathogens are well understood					
5	Reticulation	Chemical contamination	 Lack of backflow prevention Staff error Works on/near reticulation 	Moderate	Unlikely	Medium (6)	 Backflow prevention devices fitted on all commercial carriers and/or commercial fill-points. Backflow prevention devices fitted to commercial industrial premises where required. Household meters have non-return valves built into them. Processes for working on network 	Moderate	Rare	Low (3)	Confident	Back flow prevention is effective throughout	Require Aquacard completion by all workers on and around Council water infrastructure				

Drinking Water Quality Management Plan

No.	D. Scheme Component Hazard		Hazard Source	1	Maximum Risk		Existing Preventive Measures / Barriers.		Residual risk		Level of Uncertainty	Comments	Possible and Proposed Further Risk Reduction Actions (Risk Management Improvement Plan Actions)
				Consequence	Likelihood	Risk level		Consequence	Likelihood	Risk level			
							5. Only approved / qualified operators allowed to work on the network						
6	Reticulation	Physical contamination	 Dead ends (stale or dirty water) Lack of backflow prevention Staff error Works on/near reticulation 	Minor	Possible	Medium (6)	 Flushing program for dead end mains. Backflow prevention devices fitted to commercial industrial premises where required. Backflow prevention devices fitted to commercial industrial premises where required. Household meters have non-return valves built into them. Processes for working on network e.g. disinfection of service and mains repairs Only approved / qualified operators allowed to work on the network – hygiene procedures etc. 	Minor	Unlikely	Low (4)	Confident	Existing measures are robust	Require Aquacard completion by all workers on and around Council water infrastructure
7	All	 Power failure causing contaminati on or supply failure 	1. Power failure	Moderate	Likely	Medium (9)	 Good storage levels of treated water always maintained Backup generators available at some sites 	Moderate	Rare	Low (3)	Confident		Seek natural disaster funding for onsite automatic generator installation
8	All	 SCADA Communicat ion breakdown causing contaminati on or supply failure 	1. Communication breakdown	Moderate	Possible	Medium (9)	 Good storage levels of treated water always maintained Regular sampling of chemical levels at the treatment plant by staff on site 	Moderate	Rare	Low (3)	Confident		Progressively implement recommendations of audit as SCADA strategy implemented. Engineer dosing equipment to ensure overdosing impossible.
9	All	Staff error causing contaminati on or supply failure	 Staff error Dosing error Inadequate data control and reporting 	Moderate	Possible	Medium (9)	 Qualified and trained staff Unable to bypass clearwater and tower reservoir providing lag time Public notification process Triggers and alarms WQ data processes, including online analysers and trending information on SCADA Untreated water cannot bypass to reticulation 	Moderate	Unlikely	Medium (6)	Uncertain	 Even though operators are experienced, there is a lack of documented policy and procedure. Verification monitoring and reporting is performed through the QHFSS Drinking water incident and emergency management is based on information in section 15. 	Regional 2013-01: Develop and implement Operation and Maintenance procedures.
10	All	Uncertainty of source risks	Lack of consolidated data and analysis of last 5 years' monitoring	Moderate	Likely	Medium (9)	Data up to last revision attached and assessed.	Minor	Unlikely	Low (4)	Confident	Original data and assessment still valid, but risks have been more accurately re- assessed	Implementation of SWIMLocal and population with available data followed by re-assessment
11	All	Uncertainty of causes of events	Lack of consolidated data for comparison	Moderate	Likely	Medium (9)	Data up to last revision attached and assessed.	Minor	Unlikely	Low (4)	Confident	Original data and assessment still valid, but risks have been more	Implementation of SWIMLocal and population with available data followed by specific assessment of variations to the normal at events and mitigations

Page **259** of **323**

r	o.	Scheme Component	Hazard	Hazard Source		Maximum Risk		Existing Preventive Measures / Barriers.	Residual risk			Residual risk Level of Uncertainty		Possible and Proposed Further Risk Reduction Actions (Risk Management Improvement Plan Actions)
					Consequence	Likelihood	Risk level		Consequence	Likelihood	Risk level			
													accurately re- assessed	
1	2	All	 Untrained staff, limited control parameters and instructions 	Lack of supporting documentation: Procedures, manuals, forms, and sub-plans etc.	Moderate	Possible	Medium (6)		Moderate	Possible	Medium (6)	Confident	Identified in audit	Updating the procedures to reflect operational experience, output quality changes and different chemical use as well as developing O&M manuals for the remaining water supply schemes.
			•											

13.2 Regional Risk Management Measures

In this section, existing preventative measures and the proposed preventative measures are outlined.

Table 13.2 Regional Risk Management Measures

No.	Scheme Component		Hazard	Hazard Source	What are the existing preventative measures?	Do existing preventative measures impact on likelihood &/or consequence?	How effective is/are the existing preventative measure/s & on what basis has this been determined?	Residual risk after preventative measures	Is the level of residual risk acceptable	Proposed measures to reach an acceptable level or residual risk	Responsible Work Unit/ Organisation (& arrangements with external organisation if applicable)
1	Treatment	•	Substandard chemicals	storage or defective batch (eg. Chlorates)	1. Chemicals stored as per regulation	Likelihood and Consequence	Moderately effective- based on treatment results	Medium (5)	No	Require chemical quality document with each batch received from supplier Test each batch from supplier inhouse	Water and Wastewater
2	Reticulation	•	Biological contamination	1. Holes in reservoir roof allows access to vermin	 Backflow prevention devices fitted on all commercial carriers and/or commercial fill- points. Backflow prevention devices fitted to commercial industrial premises where required. Household meters have non-return valves built into them. Processes for working on network Only approved / qualified operators allowed to work on the network – hygiene procedures etc. Regular inspection and maintenance of tower reservoir Option: 6 monthly scheduled reservoir roof inspections has begun. 	Likelihood and Consequence	Effective	Low (3)	Yes	Option: Develop procedure for disinfecting mains after repairs. WIOA procedures and Operators disinfection training required. Require Aquacard completion by all workers on and around Council water infrastructure	Water and Wastewater
3	Reticulation	•	Protozoa	2. Lack of backflow prevention	 Backflow prevention devices fitted on all commercial carriers and/or commercial fill- points. Backflow prevention devices fitted to commercial industrial premises where required. Household meters have non-return valves built into them. Processes for working on network Only approved / qualified operators allowed to work on the network – hygiene procedures etc. Regular inspection and maintenance of tower reservoir 	Consequence	Effective based on ability to maintain a chlorine residual	Low (3)	Yes	Option: Develop procedure for disinfecting mains after repairs. WIOA procedures and Operator disinfection training required. Require Aquacard completion by all workers on and around Council water infrastructure	Water and Wastewater
4	Reticulation	•	Biological contamination	3. No disinfecting when repairing pipe breaks and leaks	 Disinfection residual in reticulation Minimal dead ends Flushing of problem areas regularly 	Likelihood	Effective – The conditions to growth of opportunistic pathogens are well understood	Medium (5)	No	Require Aquacard completion by all workers on and around Council water infrastructure	Water and Wastewater
5	Reticulation	•	Bacteria	4. Staff error	1. Backflow prevention devices fitted on all commercial carriers and/or commercial fill-points.	Likelihood	Effective- based on actual tests carried out.	Low (3)	Yes	Require Aquacard completion by all workers on and around Council water infrastructure	Water and Wastewater

No.	Scheme Component	Hazard	Hazard Source	What are the existing preventative measures?	Do existing preventative measures impact on likelihood &/or consequence?	How effective is/are the existing preventative measure/s & on what basis has this been determined?	Residual risk after preventative measures	Is the level of residual risk acceptable	Proposed measures to reach an acceptable level or residual risk	Responsible Work Unit/ Organisation (& arrangements with external organisation if applicable)
				2. Backflow prevention devices fitted to commercial industrial premises where required.						
				3. Household meters have non-return valves built into them.						
				4. Processes for working on network						
				5. Only approved / qualified operators allowed to work on the network						
	Reticulation	Viruses	5. Works on/near reticulation	1. Flushing program for dead end mains.			Low (4)			
				2. Backflow prevention devices fitted to commercial industrial premises where required.						
6				3. Backflow prevention devices fitted to commercial industrial premises where required.	Likelihood	Effective- no incidents have occurred, and all practical		Yes	Require Aquacard completion by all workers on and around Council water infrastructure	Water and Wastewater
				4. Household meters have non-return valves built into them.		measures have been implemented				
				5. Processes for working on network e.g. disinfection of service and mains repairs						
				6. Only approved / qualified operators allowed to work on the network – hygiene procedures etc.						
	All	Biological contamination –	1. Holes in reservoir roof allows access to vermin	1. Operators have their own passwords to log in to systems			Low (1)		Progressively implement	
		opportunistic pathogen (Naegleria		2. Active and up to date antivirus in place		Effective- no incidents have occurred, and all practical			recommendations of audit as SCADA	ι.
7		fowleri)		3. Operating system and firmware patched and updated	Consequence	measures have been implemented		Yes	strategy implemented. Engineer dosing equipment to	Water and Wastewater
				4. Application software patched and updated					ensure overdosing impossible.	
8	All	Chemical contamination	2. Lack of backflow prevention	 Good storage levels of treated water always maintained Backup generators available at some sites 	Consequence	Effective, achievable measures	Low (3)	Yes	Seek natural disaster funding for onsite automatic generator installation	Water and Wastewater and Major Projects
	All	Physical contamination	3. No disinfecting when repairing pipe breaks and	1. Good storage levels of treated water always maintained			Low (3)		Progressively implement recommendations of audit as SCADA strategy implemented.	
9			leaks	2. Regular sampling of chemical levels at the treatment plant by staff on site	Consequences	Effective, achievable measures		Yes	Engineer dosing equipment to ensure overdosing impossible.	Water and Wastewater
10	All	Uncertainty of source risks	Lack of consolidated data and analysis of last 5 years' monitoring	Data up to last revision attached and assessed.	Likelihood	Effective- no incidents have occurred as a result,	Low (3)	Yes	Implementation of SWIMLocal and population with available data	Water and Wastewater
11	All	Uncertainty of causes of events	Lack of consolidated data and	Data up to last revision attached and assessed	Likelihood	Effective- no incidents have occurred as a result,	Low (3)	No	Implementation of SWIMLocal and population with available data followed by analysis of variations around events	Water and Wastewater
12	All	Untrained staff, limited control		Limited	Likelihood and Consequences	Requires improvement	Medium (6)	No	Updating the procedures to reflect operational experience, output quality changes and different	Water and Wastewater and
		parameters and instructions	manuals, forms, and sub-plans etc.						chemical use as well as developing O&M manuals for the remaining water supply schemes.	WHS

Regional Risk Management Improvement Plan 13.3

The 263 following table displays the Risk Improvement Program for NBRC. The items identified to reduce risk have been developed to reduce the unacceptable risks identified in Table 4-6 and are shown in blue shaded boxes. General improvement items have also been listed here.

Table 13-3 Regional Risk Management Improvement Program

	Scheme Component / Sub-				Risk Improvement Actions				
Risk No.	component	Hazard/ Hazardous event	Priority	interim	short-term	long-term	Target dates	Estimated cost	Responsibility
1	Treatment	Substandard chemicals (eg. Chlorates)	High		Test each batch from supplier inhouse	Require chemical quality document with each batch received from supplier Test each batch inhouse	30/12/2022 30/12/2023	\$5000	Water and Wastewater
2	Reticulation	Biological contamination	Medium		Option: Develop procedure for disinfecting mains after repairs. WIOA procedures and Operators disinfection training required. Require Aquacard completion by all workers on and around Council water infrastructure		30/12/2022	\$10000	Water and Wastewater and WHS
3	Reticulation	Protozoa	Low		Option: Develop procedure for disinfecting mains after repairs. WIOA procedures and Operators disinfection training required. Require Aquacard completion by all workers on and around Council water infrastructure		30/12/2022	\$10000	Water and Wastewater and WHS
4	Reticulation	Biological contamination	High		Require Aquacard completion by all workers on and around Council water infrastructure	Prepare Work Instructions for disinfection of reticulation repairs	30/06/2022	\$2000	Water and Wastewater and WHS
5	Reticulation	Bacteria	Medium		Require Aquacard completion by all workers on and around Council water infrastructure	Prepare Work Instructions for disinfection of reticulation repairs	30/06/2022	-	Water and Wastewater and WHS
6	Reticulation	Viruses	Medium		Require Aquacard completion by all workers on and around Council water infrastructure	Prepare Work Instructions for disinfection of reticulation repairs	30/06/2022	-	Water and Wastewater and WHS
7	All	Biological contamination – opportunistic pathogen (Naegleria fowleri)	Low		ement recommendations of audit as SCADA strategy quipment to ensure overdosing impossible.	implemented.	Ongoing	\$500,000	Water and Wastewater
8	All	Chemical contamination	Low	Seek natural disas	ter funding for onsite automatic generator installatio	n	Ongoing	\$200,000	Water and Wastewater and Major Projects
9	All	Physical contamination	Low		ement recommendations of audit as SCADA strategy quipment to ensure overdosing impossible.	implemented.	Ongoing	\$500,000	Water and Wastewater
10	All	Uncertainty of source risks	Low	Implementation of SWIMLocal and population with available data			Ongoing	Included in operating budget	Water and Wastewater
11	All	Uncertainty of causes of events	Low	Implementation of SWIMLocal and population with available data followed by analysis of variation around events			Ongoing	Included in Operating Budget	Water and Wastewater
12	All	Lack of supporting documentation: Procedures, manuals, forms, and sub- plans etc.	Medium	Updating the procedures to reflect operational experience, output quality changes and different chemical use as well as developing O&M manuals for the remaining water supply schemes.			Ongoing (Complete suite version 1 by 12/2023)	\$80,000	Water and Wastewater and WHS

Revision 7.1

14. OPERATION AND MAINTENANCE PROCEDURES

The NBRC have some documented Operation and Maintenance (O&M) procedures. The need to develop and document these procedures has been identified in the risk assessments.

14.1 Water Treatment Plants

There are O&M manuals which are available for the Biggenden, Gayndah, Eidsvold, Mingo Crossing and Mundubbera WTPs. None of the plant manuals are in electronic version except for Mingo Crossing. Updating the manuals to reflect operational experience, output quality changes and different chemical use is identified as an item for improvement, as well as developing O&M manuals for the remaining water supply schemes.

14.2 Reticulation Systems

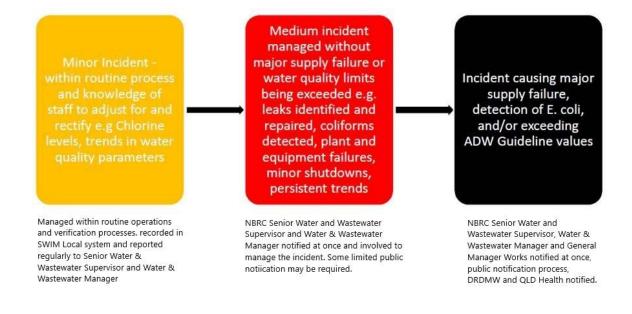
NBRC does not have any documented operation and maintenance procedures relating to the reticulation systems for the seven water supply schemes. Formally documenting operation and maintenance procedures for all nine water supply schemes has been identified as an item for improvement. A list of the operation and maintenance procedures to be formally documented is presented in Table 14-1.

NBRC has WBBROC development code as its adopted standard.

Scheme Component / Sub- component	Preventive measure managed (where applicable)	Documented procedure	Version date	Position responsible	Process for implementing the procedure (Activity and Frequency)	Comments (including where procedures are inadequate or need updating)
Treatment and Reticulation	Disinfection	Calibration of chlorine units	N/A	Operator	Included in induction package – signed when read by operator and supervisor. Included in monthly	Procedure needs to be created.
Treatment Plant	Plant Operation	Plant Operating Procedures	N/A	Operator	job list for operators. Included in induction package – signed when read by operator and supervisor.	Procedure needs to be created.
Treatment Plant	Periodic maintenance and inspections	Specific plant maintenance and inspection procedure	N/A	Operator	Included in induction package – signed when read by operator and supervisor.	Procedure needs to be created.
Reticulation	Disinfection	Procedure for repairing mains breaks	N/A	Operator	Included in induction package – signed when read by operator and supervisor.	Procedure needs to be created.
Sampling and testing procedures (Various)		Procedure for sampling and testing as appropriate is supplied (QLD	N/A	Operator	Included in induction package – signed when read by operator and supervisor.	

Table 14-1 Operation and Maintenance Procedures Documentation.

Scheme Component / Sub- component	Preventive measure managed (where applicable)	Documented procedure	Version date	Position responsible	Process for implementing the procedure (Activity and Frequency)	Comments (including where procedures are inadequate or need updating)
		Health document)			Included in daily job list for operators.	


15. MANAGEMENT OF INCIDENTS AND EMERGENCIES

15.1 General Management

NBRC have a Local Disaster Management Plan (LDMP) in place to deal with large scale regional disasters.

The management of incidents and emergencies for drinking water systems are covered in this section.

Currently, systems checks are performed by appropriately qualified staff and recorded in the SWIMLocal system. If issues are enounced, they are escalated to the NBRC Water and Wastewater Senior Supervisor, Water and Wastewater Senior Technical Officer and Water and Wastewater Manager. A summary of the current incident response levels and a description of how incidents are currently responded to is provided in Figure 15-1.

Figure 15-1 Incident Response Levels and Escalation

Table 15-1 provides an example of how incident and emergency levels may be described, and how they might be interpreted while Table 15-2 provides examples of how specific incidents and emergencies are managed and who is responsible.

Incident reporting will meet reporting requirements under the Drinking Water Service Providers Monitoring and Reporting Notice.

Table 15-1 Incident/Emergency Levels

Incident / Emergency level	Description of Level
Level 5 (event or incident)	 Widespread outbreak of waterborne disease Declared disaster Gross exceedances of ADWG health guideline values for a chemical parameter (e.g. more than five times the ADWG health guideline limit [after confirmation testing]).
Level 4 (event or incident)	 High level of <i>E. coli</i> (e.g. > 5 CFU/ 100 mL) detected in reticulation Failure of infrastructure (severe or emergency level supply restrictions required to ensure continuity of supply and possible loss of supply)
Level 3 (event or incident)	 Detection of 1-5 CFU/100 mL <i>E. coli</i> in reticulation Failure of infrastructure (ability to supply water compromised – immediate water restrictions may be required, or localised loss of supply) Minor exceedances of ADWG health guideline value for chemical parameter (determined value is < 5 times guideline value). Detection of parameter with no ADWG value or QLD Health interim guideline value
Level 2	 Failure of infrastructure or source supply (water quality or supply unlikely to be compromised - alternate process available to provide drinking water) Exceedances of ADWG aesthetic guideline (customer complaints possible)
Level 1	 Exceedances of operational limit managed through operational and maintenance procedures and reported to technical and supervisory staff

Table 15-2 Management of Incidents and Emergencies

Level	Incident or emergency	Summary of actions to be taken (with documented procedure listed)	Position/s responsible for Action/s
1	Exceedances of operational limit managed through operational and maintenance procedures	Confirm results by retesting. Undertake necessary corrective actions. Resample and re-test Report to Senior Supervisor and Senior Technical Officer	Operator
2	Failure of infrastructure or source supply (water quality or supply unlikely to be compromised) / alternate process available to provide drinking water / exceedances of ADWG aesthetic guideline	Notify Senior Water and Wastewater Supervisor and Senior Technical Officer Determine affected infrastructure and arrange immediate backup/repair/rectification Switch raw water source if appropriate If treatment component disabled refer to the plant operating manual.	Operator Senior Water and Wastewater Supervisor and Senior Operator
	(customer complaints possible)	Arrangements can immediately be made to import potable water if necessary, to maintain water supply Notify Water and Wastewater Manager	Senior Water and Wastewater Supervisor
		Notify Regulator if need to vary operations from DWQMP	Manager Water and Wastewater

Level	Incident or emergency	Summary of actions to be taken (with documented procedure listed)	Position/s responsible for Action/s
	Detection of 1-5 CFU/100 mL <i>E. coli</i> in reticulation /	Notify Senior Water and Wastewater Supervisor and Senior Technical Officer	Operator
	Failure of infrastructure (ability to supply water	Notify Water and Wastewater Manager	Senior Water and Wastewater Supervisor
	compromised – short term water restrictions may be required) / Minor	Determine potentially affected area, isolate if possible, flush and rechlorinate	
	exceedances of ADWG health guideline value for chemical parameter (determined value is close to guideline value); Detection of parameter with no ADWG value or QLD Health interim	Notify General Manager Works and Report detection to OWSR by phone Notify Communications Team to standby for public notification as required Written incident report – Part 1 incident form - within 24 hours. Signed by WWW Manager or GM Works	Water and Wastewater Manager
3	guideline value.	Consider Contaminated/Boil Water alert in conjunction with Queensland Health. Escalate emergency further if situation worsens.	
		Resample for <i>E. coli</i> and disinfectant residual in potentially affected infrastructure	Senior Technical Officer
		Undertake comprehensive contamination investigation	
		Undertake necessary corrective actions – resampling, flushing and re-chlorination	Operator
		Upon resolution, provide written report to regulator (Part 2 incident form)	Water and Wastewater Manager
		Arrangements can immediately be made to import potable water if necessary, to maintain water supply.	Senior Water and Wastewater Supervisor and Senior Technical Officer
	High level of E. coli (e.g. > 5 CFU/ 100 mL) detected	Notify Senior Water and Wastewater Supervisor and Senior Technical Officer	Operator
	in reticulation Failure of infrastructure (severe or	Notify Water and Wastewater Manager	Senior Water and
	emergency level supply restrictions required to ensure continuity of	Determine potentially affected area, isolate if possible, flush and rechlorinate	Wastewater Supervisor
	supply and possible loss of supply)	Notify General Manager Works and Report detection to OWSR by phone	Water and Wastewater Manager
4		Arrangements can immediately be made to import potable water if necessary, to maintain water supply	Senior Water and Wastewater Supervisor
		Notify Communications Team to standby for public notification as required	Senior Technical Officer
		Written incident report – Part 1 incident form - within 24 hours. Signed by WWW Manager or GM Works	

Level	Incident or emergency	Summary of actions to be taken (with documented procedure listed)	Position/s responsible for Action/s
		Contaminated/Boil Water alert.	Water and Wastewater Manager
		Escalate emergency further if situation worsens (OWSR).	
		Resample for E. coli and disinfectant residual in potentially affected infrastructure	Operator
		Undertake comprehensive contamination investigation	Senior Water and Wastewater Supervisor
		Undertake necessary corrective actions – resampling, flushing and re-chlorination	and Senior Technical Officer
		Upon resolution, provide written report to regulator (Part 2 incident form)	Water and Wastewater Manager
	Widespread outbreak of waterborne disease / Declared disaster / Supply	Notify NBRC Management	Operator / Senior Water and Wastewater Supervisor
	unable to be maintained / Gross exceedances of	Notify LDMG	Water and Wastewater Manager
	ADWG health guideline values for a chemical parameter (e.g. more	Issue contaminated/boil water alert, flush and re-chlorinate	india de la
	than five times the ADWG health guideline limit).	Notify Qld Health	
		Report detection to OWSR by phone	
-		Notify Qld Police Service	
5		LDMG Stands Up	CEO
		Written incident report – Part 1 incident form - within 24 hours	Water and Wastewater Manager
		Undertake comprehensive contamination investigation.	
		Undertake necessary corrective actions as directed by LDMG	
		Upon resolution, provide written report to regulator (Part 2 incident form)	

The contact details of key people (internal and external) to be contacted in the event of an emergency is listed in **Error! Reference source not found.** (*Appendix C*)

15.2 Emergency Response Training

All employees that may potentially be involved in an incident response will be trained in their responsibilities. Employees likely to be involved in any of the key roles identified in this plan will receive detailed training on their responsibilities. This training is part of the staff training procedure and attendance is to be recorded.

16. SERVICE WIDE SUPPORT – INFORMATION MANAGEMENT

Water quality testing results are currently manually entered into SWIMLocal by operators or administrative staff. The operational activities and decisions made by operators, Senior Water and Wastewater Supervisor and the Water and Wastewater Manager relating to WTP operation are recorded in work diaries, which are retained onsite for future reference. Operational issues are recorded in SWIMLocal database. The Magic Document Management System is used throughout Council to maintain records pertaining to correspondence, purchasing, Council resolutions and general Council business. It also serves as the document control system for all active documents within the Water and Wastewater area, providing a framework for document numbering, revision etc. Council has various policies which control the use and operation of the system.

The following Appendices A and B detail the current operational and verification monitoring performed by NBRC.

17. APPENDIX A: OPERATIONAL MONITORING PROGRAMS

17.1 Operational Monitoring and Critical Control Points

The following sections detail the Operational Monitoring conducted by NBRC. Operational monitoring is used to confirm that the current treatment measures in place to control hazards are functioning properly and effectively. Data from operational monitoring can be used as triggers for immediate short-term corrective actions to improve drinking water quality and reduce the risk of adverse impacts to the water supply.

These tables include the monitoring locations, parameters measured; target and critical levels and actions to be taken if levels are exceeded. The frequency of sampling at each location and any other sample points is also tabulated including the sampling/analysis method (e.g., on-line, grab etc.).

The critical control point(s) (CCP) are also highlighted. A CCP is an action or process that reduces the risk associated with a particular hazard and that is critical to ensuring water quality objectives can be achieved (i.e. loss of control at a critical control point would imply that the water quality may be compromised to an unacceptable level).

As part of the plan, several preventative measures (Critical Control Points (CCPs)) have been identified with the intention to ensure the residual risk of supplying poor quality water to consumers is acceptably low. Critical response procedures, in the event of a CCP exceedance, are also a key component of this Plan. The CCP tables are presented below.

Additional CCP table

	Biggenden	Eidsvold	Gayndah	Mingo	Monto	Mt Perry	Mulgildie	Mundubbera	Paradise Dam
Critical				Ch	l lorine injectio	n			Dani
control point									
Parameter				ſ	ree chlorine				
Hazard				Ove	er/under dosi	ng			
Monitoring	Daily post sand filter	Daily post- secondary chlorinated tank	Daily post Clearwater ground reservoir	Daily post potable water tank	Daily post UV	Daily post ground reservoir	Daily post clearwater storage tanks	Daily at inlet to ground reservoir	Daily post clearwater storage tank
Target range (mg/L)	0.5 - 3.0	0.8 - 3.5	0.5 - 5.0	0.7 - 1.7	1.2 to 3.5	1 to 3.5	0.5 to 4	0.5 to 5	1.5 to 3.8
Critical Limit	Lower - 0.2	Lower - 0.5	Lower - 0.2	Lower - 0.5	Lower - 0.5	Lower - 0.5	Lower - 0.2	Lower - 0.2	Lower - 0.8
(mg/L)	Upper - 5.0	Upper - 5.0	Upper - 5.5	Upper - 5	Upper - 5	Upper - 5	Upper - 5	Upper - 5.5	Upper - 5

Critical control point	Sand filter	Sand filter	Sand filter	Ultra- filtration		Sand filter	Sand filter	Filtration
Parameter					Turbidity			
Hazard	Ineffective filtration for disinfection and protozoa removal	Ineffective filtration for disinfection [#] and protozoa removal	Ineffective filtration for disinfection [#] and protozoa removal	Ineffective filtration disinfection and protozoa removal		Ineffective filtration for disinfection and protozoa removal	Ineffective filtration for disinfection and protozoa removal	Ineffective filtration for disinfection and protozoa removal
Monitoring				D	aily post filter		•	•
Target range (NTU)	<0.15	<1	<1	<0.15		<0.15	<0.15	<0.15
Critical Limit (NTU)	>0.2	>5	>5	>0.2		>0.2	>0.2	>0.2

Turbidity for these schemes are not the critical control points but have been included here as parameters that need to monitor to ensure UV disinfection effectiveness.

Critical control point			I	Disinfection			
Parameter	UV intensity	UV dose		UV dose			
Hazard			Reduced	effectiveness	s of UV		
Monitoring	UV intensity	SCADA		SCADA			
	monitor						
Target	>80%	>500 (J/cm ²)		>500			
range				(J/cm ²)			
Critical	<60%	<400 (J/cm ²)		<400			
Limit				(J/cm ²)			

Biggenden Operational Monitoring and CCP

The key elements of the Biggenden operational monitoring program are outlined in Table 17-1 and the critical control point is highlighted in orange. Sampling locations for the parameters listed in this table are shown in Figure 4-1 and Figure 4-2. The locations for Chlorine Residual testing are generally located at dead end mains where longer residence times may be experienced.

Operational Control Points	Operational Parameter	Associated Hazard	Monitoring Requirements		-		ction if Target Level Exceeded	Critical Limit		Action if Critical Level Exceeded	
Raw Water	Colour	Discoloured Water from Iron and Manganese	Recorded daily	10 mL sample	Photometer	>100 Hazen <220 Hazen	1. 2.	Increase oxidisation agent (Sodium Hypo) < 100 Hazen Decrease oxidisation agent > 200 Hazen	-	-	
Chorine Injection	Free Chlorine	Excessive or under dosage of chlorine	Recorded daily at the raw water sample tap at the inlet to the WTP	10 mL sample	Photometer	Lower – 0.5 mg/L Upper – 3.0 mg/L	1.	Re-test and adjust dosage as required	Lower – 0.2 mg/L Upper – 4.0 mg/L	1. 2. 3. 4. 5.	Shut down plant Check chlorine dosing pumps Rectify issue Start plant Re-test for free chlorine
Flocculation	Colour	Failure of flocculation	Recorded daily post sand filter	10 mL sample	Photometer	<5 Hazen	1. 2.	Check coagulation and flocculation process Backwash filters and re-test if necessary	>15 Hazen	1. 2.	Check coagulation and flocculation process Backwash filters and re-test if necessary

Table 17-1 Biggenden Operational Monitoring

Operational Control Points	Operational Parameter	Associated Hazard	Mo	onitoring R	equirements	Target Limits	Action if Target Level Exceeded	Critical Limit	Action if Critical Level Exceeded
Sand Filter	Turbidity	Blocked filters	Recorded daily post sand filter	10 mL sample	Turbidity meter	<0.15 NTU	 Check coagulation and flocculation process Backwash filters and re-test if necessary 	>0.2 NTU	 Check coagulation and flocculation process Backwash filters and re-test if necessary Divert filtered water to the lagoons if necessary Drain Ground Reservoir if necessary Replace filter layers if necessary
Sand Filter	Turbidity	Ineffective filtration for disinfection and protozoa removal	Recorded daily	10 mL sample	Turbidity meter	<0.15 NTU	 Check coagulation and flocculation process Backwash filters and re-test if necessary 	>0.2 NTU	 Check coagulation and flocculation process Backwash filters and re-test if necessary
Chorine Injection	Free Chlorine	Excessive or under dosage of chlorine	Recorded daily post sand filter	10 mL sample	Photometer	Lower – 0.5 mg/L Upper – 3.0 mg/L	 Re-test and adjust dosage as required 	For a maximum duration of 1 hour: Lower – 0.2 mg/L Upper – 5.0 mg/L	 Check dosing pumps and injection points and rectify Test chlorine in Ground Reservoir Flush and drain Ground Reservoir if required Overdose: Turn off injection and run water to Ground Reservoir until chlorine level is within normal parameters Underdose: Add chlorine until level is within normal parameters

Operational Control Points	Operational Parameter	Associated Hazard	Monitoring Requirements		Target Limits	A	ction if Target Level Exceeded	Critical Limit		Action if Critical Level Exceeded	
pH Correction	рН	Failure of flocculation. Acidic/alkaline water	Recorded daily	10 mL sample	Portable pH meter or photometer	>6.7 <8.3	1. 2.	Dose with soda ash to raise pH or dose with hydrochloric acid to reduce pH Retest	>6.5 <8.5	1. 2.	Dose with soda ash to raise pH or dose with hydrochloric acid to reduce pH Retest
Reticulation Test Point 1 (Bush Shed Alice St) Test Point 2 (Rollinson's Park) Test Point 3 (Kent St) Test Point 4 (Edward St) Test Point 5 (John St) Test Point 6 (North Alice Street)	Chlorine residual	Biological Contamination (Microbial Growth)	Recorded weekly	10 mL sample	Photometer	Lower – 0.5 mg/L Upper – 3.5 mg/L	1.	Check chlorine dosing at WTP	Lower – 0.2 mg/L Upper – 5.0 mg/L	1. 2. 3.	Check chlorine dosing at WTP If > than 5 mg/L flush reticulation mains and Elevated Water Tower Overdose: Turn off injection and run water to Ground Reservoir until chlorine level is within normal parameters Underdose: Add chlorine until level is within normal parameters

Eidsvold Operational Monitoring and CCP

The key elements of the Eidsvold operational monitoring program are outlined in **Error! Reference source not found.** and the critical control point is highlighted in orange. Sampling locations for the parameters listed in this table are shown in Figure 5-1 and Figure 5-2.

Operational Control Points	Operational Parameter	Associated Hazard	Monitor	ing Require	ments	Target Limits	Action if Target Level Exceeded	Critical Limit	Action if Critical Level Exceeded
Flocculation	Colour	Failure of flocculation	Recorded daily post sand filters	10 mL sample	Photometer	<5 Hazen	 Check coagulation and flocculation process Backwash filters and re-test 	>15 Hazen	 Check coagulation and flocculation process Backwash filters and re-test. Drain filtered water tank to the lagoons if necessary Replace filter layers if necessary
Sand Filter	Turbidity	Blocked Filters	Recorded daily post sand filters	10 mL sample	Turbidity meter	<1 NTU	 Check coagulation and flocculation process Backwash filters and re-test if necessary 	>5 NTU	 Check coagulation and flocculation process Backwash filters and re-test if necessary Drain filtered water tank to the lagoons if necessary Replace filter layers if necessary
Sand Filter	Turbidity	Ineffective filtration for disinfection and protozoa removal	Recorded daily post sand filter	10 mL sample	Turbidity meter	<1 NTU	 Backwash filters Check Floc Tank Re-test turbidity 	>5 NTU	 Retest Check coagulation and flocculation process Backwash filters and re-test if necessary Investigate issues and rectify

Table 17-2 Eidsvold Operational Monitoring

Operational Control Points	Operational Parameter	Associated Hazard	Monitor	ing Require	ments	Target Limits	_		Action if Critical Level Exceeded
Chorine Injection	Free Chlorine	Excessive or under dosage of chlorine	Recorded daily post-secondary chlorinated tank	10 mL sample	Photometer	Lower – 0.8 mg/L Upper – 3.5 mg/L	 Re-test and adjust dosage as required 	Lower - 0.5 mg/L Upper - 5 mg/L	 Test chlorine in chlorinated water storage tanks Overdose: Turn off injection and run water to storage tanks until chlorine level is within normal parameters Underdose: Add chlorine until level is within normal parameters
UV Disinfection	UV Intensity	Reduced effectiveness of UV	Continuous		UV intensity monitor	>80%	1. Operator attend the plant to investigate	<60%	 Plant automatically shut down Operator attend the plant to investigate
Reticulation • Test Point 3 (WTP tap) • Test Point4 (Showgrounds) • Test Point 5 (Council Office)	Chlorine Residual	Biological Contamination (Microbial Growth)	Recorded weekly	10 mL sample	Photometer	>=0.5 - <=1.0 mg/L	 Check chlorine dosing at WTP 	0.5 – 5mg/L	 Check chlorine dosing at WTP If > than 5 mg/L flush reticulation mains

Gayndah Operational Monitoring and CCP

The key elements of the Gayndah operational monitoring program are outlined in Table 17-3 and the critical control point is highlighted in orange. Sampling locations for the parameters listed in this table are shown in Figure 6-1. The locations for chlorine residual testing are generally located at dead end mains were longer residence times may be experienced.

Table 17-3 Gayndah Operational Monitoring

Operational Control Points	Operational Parameter	Associated Hazard	Monitoring Requirements			Target Limits	Action if Target Level Exceeded	Critical Limit	Action if Critical Level Exceeded
Flocculation	Colour	Failure of flocculation	Recorded daily post sand filter	10 mL sample	Photometer	<5 Hazen	 Check coagulation and flocculation process Backwash filters and re- test if necessary 	>15 Hazen	 Check coagulation and flocculation process Backwash filters and re-test if necessary
Chorine Injection	Free Chorine	Excessive or under dosage of chlorine	Recorded daily at pre filtration	10 mL sample	Photometer	Lower – 0.1 mg/L Upper – 1.8 mg/L	 Re-test and adjust dosage as required 		
Sand Filter	Turbidity	Blocked Filters	Recorded daily post sand filter	10 mL sample	Turbidity meter	<0.15 NTU	 Check coagulation and flocculation process Backwash filters and re- test if necessary 	>0.2 NTU	 Check coagulation and flocculation process Backwash filters and re-test if necessary Divert filtered water to the lagoons if necessary Drain the Clearwater Ground Reservoir if necessary Replace filter layers if necessary

Operational Control Points	Operational Parameter	Associated Hazard	Monitoring Requirements			Target Limits	Action if Target Level Exceeded	Critical Limit	Action if Critical Level Exceeded
Sand Filtration	Turbidity	Ineffective filtration for disinfection and protozoa removal	Recorded daily post sand filter	10 mL sample	Turbidity meter	<1 NTU	 Backwash filters Check clarifier Re-test turbidity 	>5 NTU	 Retest Check coagulation and flocculation process Backwash filters and re-test if necessary Investigate issues and rectify
pH Correction	рН	Failure of flocculation acidic/alkaline water	Record daily	10mL sample	pH electrode meter	>6.7 <8.3	 Dose with caustic soda to raise pH or dose with hydrochloric acid to reduce pH Retest 	>6.5 <8.5	 Dose with caustic soda to raise pH or dose with hydrochloric acid to reduce pH Retest
Disinfection	UV Dose	Reduced effectiveness of UV	Continuous		SCADA	>500 J/cm ²	1. Operator attend the plant to investigate	<400 J/cm ²	 Plant automatically shut down Operator attend the plant to investigate

Operational Control Points	Operational Parameter	Associated Hazard	Monitoring Requirements			Target Limits	Action if Target Level Exceeded Critical Limit			Action if Critical Level Exceeded	
Chorine Injection	Free Chorine	Excessive or under dosage of Chlorine	Recorded daily post 650kL clearwater ground reservoir at the WTP	10 mL sample	Photometer	Lower – 0.5 mg/L Upper – 5.0 mg/L	 Re-test and adjust dosage as required 	Lower - 0.2 mg/L Upper – 5.5 mg/L	1. 2. 3. 4.	Check dosing pumps and injection points and rectify Test chlorine in Duke Ground Reservoirs Flush and drain Duke Ground Reservoirs if required Overdose: Turn off injection and run water to Duke Ground reservoir until chlorine level is within normal parameters Underdose: Add chlorine until level is within normal parameters	
 Reticulation Test Point 2 (Showgrounds) Test Point 3 (Dowsett Park) Test Point 4 (Gayndah Airport) Test Point 5 (Pioneer Place) Test Point 6 (Zonhoven Park) 	Chlorine residual	Biological Contamination (Microbial Growth)	Recorded Weekly	10 mL sample	Photometer	Lower – 0.5 mg/L Upper – 3.5 mg/L	 Check chlorine dosing at WTP 	Lower – 0.2 mg/L Upper – 5.0 mg/L	1. 2. 3. 4.	Check chlorine dosing at WTP If > than 5 mg/L flush reticulation mains and Duke Ground Reservoirs Overdose: Turn off injection and run water to Duke Ground reservoir until chlorine level is within normal parameters Underdose: Add chlorine until level is within normal parameters	

Mingo Crossing Operational Monitoring and CCP

The key elements of Mingo Crossing operational monitoring program are outlined in Table 17-4 and the critical control point is highlighted in orange. Sampling locations for the parameters listed in this table are shown in Figure 7-2.

Operational Control Points Operational **Associated Hazard Monitoring Requirements Target Limits** Action if Target Level **Critical Limit** Action if Critical Level Exceeded Parameter Exceeded Nephelo-1. Check coagulation and Post filtration Turbidity Ineffective filtration Recorded <0.15 NTU 1. Check raw water >0.2 NTU for disinfection and daily post meter flocculation process quality UF protozoa removal 2. Check coagulation 2. Backwash filters and reand flocculation test. process 3. Divert filtered water to 3. Backwash filters irrigation if necessary 4. Re-test turbidity 4. Replace filter layers if necessary 1. Test chlorine in potable 10 mL Photometer Lower – 0.7 Lower – 0.5 **Chorine injection** Free chlorine **Excessive or under** Recorded Re-test and adjust sample mg/L mg/L water tank dosage of chlorine twice dosage as required weekly from Upper – 1.7 Upper – 5 2. Overdose: Turn off dosing the potable mg/L mg/L pump, drain and refill water tank potable water tank until target chlorine level is within normal parameters. 3. Underdose: Add chlorine until level is within normal parameters Photometer Lower – 0.7 Lower - 0.5 10 mL Chlorine residual Free chlorine Biological Recorded Check chlorine dosing 1. Check chlorine dosing sample mg/L mg/L Contamination and adjust Weekly and adjust **Treated Water Sample** ٠ (Microbial Growth) Upper – 1.7 Upper – 5.0 Point 2. Overdose: Turn off dosing mg/L mg/L pump, drain and refill (See water supply map Figure potable water tank until 7-2) target chlorine level is within normal parameters.

Table 17-4 Mingo Crossing Operational Monitoring

Operational Control Points	Operational Parameter	Associated Hazard	Monitoring Requirements	Target Limits	Action if Target Level Exceeded	Critical Limit	Action if Critical Level Exceeded
							 Underdose: Add chlorine until level is within normal parameters

Monto Operational Monitoring and CCP

The key elements of the Monto operational monitoring program are outlined in Table 17-5 and the critical control point is highlighted in orange. Sampling locations for the parameters listed in this table are shown in Figure 8-1 and Figure 8-2. The locations for Chlorine Residual testing are generally located at dead end mains were longer residence times may be experienced.

Operational Control Points	Operational Parameter	Associated Hazard	Monitoring Requirements			Target Limits	its Action if Target Level Exceeded		Critical Limit		Action if Critical Level Exceeded
Disinfection	UV Dose	Reduced effectiveness of UV	Continuous		SCADA	>500 J/cm ²	1.	Operators attend the plant to investigate	<400 J/cm ²	1. 2.	Plant automatically shut down Operators attend the plant to investigate
Chorine Injection	Free chlorine	Excessive or under dosage of chlorine	Recorded daily post UV	10 mL sample	Photometer	Lower – 1.2 mg/L Upper – 3.5 mg/L	1.	Re-test and adjust dosage as required	Lower – 0.5 mg/L Upper – 5.0 mg/L	1. 2. 3. 4.	Check dosing pumps and injection points and rectify Test chlorine in Elevated Storage Flush and drain Elevated Storage if required Overdose: Turn off injection and run water to Elevated Storage until chlorine level is within normal parameters Underdose: Add chlorine until level is within normal parameters

Table 17-5 Monto Operational Monitoring

Operational Control Points	Operational Parameter	Associated Hazard	Monito	oring Requ	irements	Target Limits	Action if Target Level Exceeded	Critical Limit	Action if Critical Level Exceeded
 Reticulation Test Point 1 (Don McInnes) Test Point 2 (Monto Bowls Club) Test Point 3 (Forsyth Triangle) Test Point 4 (Luthje Rd) Test Point 5 (Mill Rd) 	Chlorine residual	Biological Contamination (Microbial Growth)	Recorded weekly	10 mL sample	Photometer	Lower – 0.5 mg/L Upper – 3.5 mg/L	 Check chlorine dosing at WTP 	Lower – 0.2 mg/L Upper – 5.0 mg/L	 Check chlorine dosing at WTP If > than 5 mg/L flush reticulation mains and Elevated Storage Overdose: Turn off injection and run water to Elevated Storage until chlorine level is within normal parameters Underdose: Add chlorine until level is within normal parameters

Mount Perry Operational Monitoring and CCP

The key elements of the Mount Perry operational monitoring program are outlined in Table 17-6 and the critical control point is highlighted in orange. Sampling locations for the parameters listed in this table are shown in Figure 9-1 and Figure 9-2.

Operational Control Points	Operational Parameter	Associated Hazard	Monit	oring Requ	lirements	Target Limits	Action if Target Level Exceeded	Critical Limit	Action if Critical Level Exceeded
Chorine Injection	Free chlorine	Excessive or under dosage of Chlorine	Recorded weekly post Ground Reservoir	10 mL sample	Photometer	Lower – 1.0 mg/L Upper – 3.5 mg/L	1. Re-test and adjust dosage as required	Lower – 0.5 mg/L Upper – 5.0 mg/L	Test chlorine in reservoir. Overdose: Turn off chlorine dosing and run water to the Ground Reservoir until chlorine levels are within normal parameters Underdose: Add chlorine until level is within normal parameters
Reticulation • Test Point 1 (Community Complex) • Test Point 2 (Hunter St)	Residual Chlorine	Biological Contamination (Microbial Growth)	Recorded weekly	10 mL sample	Photometer	Lower – 0.5 mg/L Upper – 3.5 mg/L	 Check chlorine dosing at WTP and adjust 	Lower – 0.2 mg/L Upper – 5 mg/L	 Check chlorine dosing at WTP and adjust Flush reticulation mains and Ground Reservoir Overdose: Turn off chlorine dosing and run water to the Ground Reservoir until chlorine levels are within normal parameters Underdose: Add chlorine until level is within normal parameters

Table 17-6 Mount Perry Operational Monitoring

Mulgildie Operational Monitoring and CCP

The key elements of the Mulgildie operational monitoring program are outlined in Table 17-7 and the critical control point is highlighted in orange. Sampling locations for the parameters listed in this table are shown in Figure 10-1 and Figure 10-2.

Operational Control Points	Operational Parameter	Associated Hazard	Mo	Monitoring Requirements		Target Action if Target Level Limits Exceeded		Critical Limit	1	Action if Critical Level Exceeded	
Sand Filter	Turbidity	Ineffective filtration for manganese and iron removal	Recorded weekdays post sand filter	10 mL sample	Turbidity meter	<0.15 NTU	1. 2. 3. 4. 5.	Backwash filters Check settling tank Test chlorine level Re-test turbidity Increase chlorine dose if necessary	>2 NTU	1. 2.	Backwash filters and re-test. Replace filter layers if necessary.
Chorine Injection	Free Chlorine	Excessive or under dosage of Chlorine	Recorded weekdays post clearwater storage tanks	10 mL sample	Photometer	Lower – 0.5 mg/L Upper – 4.0 mg/L	1.	Re-test and adjust dosage as required	Lower - 0.2 mg/L Upper – 5.0 mg/L	1. 2. 3.	Test chlorine in clearwater reservoir. Overdose: Turn off injection and clearwater pump. Run water to clearwater reservoirs until chlorine level is within normal parameters Underdose: Add chlorine until level is within normal parameters
Chorine Injection	Free Chlorine	Excessive or under dosage of Chlorine	Recorded weekdays post elevated storage tank	10 mL sample	Photometer	Lower – 0.5 mg/L Upper – 3.5 mg/L	1.	Check chlorine dosing at WTP	Lower – 0.2 mg/L Upper – 5.0 mg/L	1. 2.	Check chlorine dosing at WTP If > than 5 mg/L flush reticulation mains

Table 17-7 Mulgildie Operational Monitoring

Operational Control Points	Operational Parameter	Associated Hazard	Monitoring Requirements		TargetAction if Target LevelLimitsExceeded		Critical Limit	Action if Critical Level Exceeded	
pH Correction	рН	Failure of flocculation. Acidic/alkaline water	Recorded weekly post clearwater reservoirs	10 mL sample	Photometer	>6.7 <8.3	 Dose with caustic soda to raise pH or dose with hydrochloric acid to reduce pH. Retest 	>6.5 <8.5	 Dose with caustic soda to raise pH or dose with hydrochloric acid to reduce pH. Retest
Reticulation • Test Point 2 (Wattle St)	Chlorine Residual	Biological Contamination (Microbial Growth)	Recorded weekly	10 mL sample	Photometer	Lower – 0.5 mg/L Upper – 3.5 mg/L	Check chlorine dosing at WTP	Lower – 0.2 mg/L Upper – 5.0 mg/L	 Check chlorine dosing at WTP If > than 5 mg/L flush reticulation mains and Elevated Water Tower Overdose: Turn off injection and run water to Clearwater Storage Tanks until chlorine level is within normal parameters Underdose: Add chlorine until level is within normal parameters

Mundubbera Operational Monitoring and CCP

The key elements of the Mulgildie operational monitoring program are outlined in Table 17-8 and the critical control point is highlighted in orange. Sampling locations for the parameters listed in this table are shown in Figure 11-1 and Figure 11-2.

Table 17-8 Mundubbera Operational Monitoring

Operational Control Points	Operational Parameter	Associated Hazard	Mon	itoring Rec	uirements	Target Limits	Action if Target Level Exceeded				Critical Limit	Action if Critical Level Exceeded
Raw water	Iron	Discoloured Water	Recorded Daily	10 mL sample	Photometer	0.3 (Aesthetic)	1. 2.	Increase oxidisation agent (potassium permanganate) Increase detention time				
Raw water	Manganese	Discoloured Water	Recorded Daily	10 mL sample	Photometer	<0.1	1. 2. 3.	Increase oxidisation agent (Sodium Hypo) Backwash filters Increase detention time	>0.5	 Increase oxidisation agent (Sodium Hypo) Backwash filters Increase detention time 		
Flocculation	Colour	Failure of flocculation	Recorded daily post sand filter	10 mL sample	Photometer	<5 Hazen	1. 2.	Check coagulation and flocculation process Backwash filters and re- test if necessary	>15 Hazen	 Check coagulation and flocculation process Backwash filters and re- test if necessary 		
Chorine Injection	Free Chlorine	Excessive or under dosage of chlorine	Recorded daily prior to filtration	10 mL sample	Photometer	Lower – 0.1 mg/L Upper –1.5 mg/L	1.	Re-test and adjust dosage as required				
Sand Filter	Turbidity	Blocked Filters	Recorded daily post sand filter	10 mL sample	Turbidity meter	<0.2 NTU	1. 2.	Check coagulation and flocculation process Backwash filters and re- test if necessary	>5 NTU	 Check coagulation and flocculation process Backwash filters and re- test if necessary 		
Sand Filter	Turbidity	Ineffective filtration for disinfection and protozoa removal	Recorded daily post sand filter	10 mL sample	Photometer	<0.15 NTU	1. 2. 3. 4.	Backwash filters Check clarifier Test chlorine level Re-test turbidity	>0.2 NTU	 Backwash filters Check flocculation/ coagulation Retest turbidity 		

Operational Control Points	Operational Parameter	Associated Hazard	Mon	itoring Req	uirements	Target Limits		Action if Target Level Exceeded	Critical Limit	Action if Critical Level Exceeded	
pH Correction	рН	Failure of flocculation. Acidic/alkaline water	Recorded daily	10 mL sample	Photometer	> 6.5 < 8.5	1. 2.	Dose with caustic soda to raise pH or dose with hydrochloric acid to reduce pH. Retest	> 6.5 <8.5	 Dose with caustic soda to raise pH or dose with hydrochloric acid to reduce pH. Retest 	
Chlorine injection	Free Chlorine	Excessive or under dosage of chlorine	Recorded daily at the inlet to the 2.8 ML Ground Reservoir	10 mL sample	Photometer	Lower – 0.5 mg/L Upper –5.0 mg/L	1.	Re-test and adjust dosage as required	Lower – 0.2 mg/L Upper – 5.5 mg/L	 Test chlorine in balancing tank. Overdose: Turn off injection and run water to Ground Reservoir until chlorine level is within normal parameters Underdose: Add chlorine until level is within normal parameters 	
 Reticulation Test Point 2 (Frank McCauley St) Test Point 3 (Cnr Hardy & Mitchell St) Test Point 4 (River Pump Shed Orton St) Test Point 5 (No 5 SPS Jack Parr St) Test Point 6 (No 4 SPS Billabong Motel) 	Chlorine Residual	Biological Contamination (Microbial Growth)	Recorded Weekly	10 mL sample	Photometer	Lower – 0.5 mg/L Upper – 3.5 mg/L	2.	Check chlorine dosing at WTP	Lower – 0.2 mg/L Upper – 5.0 mg/L	 Check chlorine dosing at WTP If > than 5 mg/L flush reticulation mains and Elevated Reservoir Overdose: Turn off injection and run water to Ground Reservoir until chlorine level is within normal parameters Underdose: Add chlorine until level is within normal parameters 	

Paradise Dam Operational Monitoring and CCP

The key elements of the Paradise Dam operational monitoring program are outlined in Table 17-9 and the critical control point is highlighted in orange. Sampling locations for the parameters listed in this table are shown in Figure 12-2.

Operational Control Points	Operational Parameter	Associated Hazard	Monitoring Requirements		Target Limits	Action if Target Level Exceeded	Critical Limit	Action if Critical Level Exceeded	
Post filtration	Turbidity	Ineffective filtration for disinfection and protozoa removal	Recorded daily	10 mL sample	Turbidity meter	<0.15 NTU	 Check raw water quality Backwash filters Re-test turbidity 	>0.2 NTU	 Backwash filters and re- test. Replace filter layers if necessary.
Chorine injection	Free chlorine	Excessive or under dosage of chlorine	Recorded weekly at post injection point	10 mL sample	Photometer	Lower – 2.0 mg/L Upper – 3.8 mg/L	Re-test and adjust dosage as required	Lower – 1.0 mg/L Upper – 5.0 mg/L	 Test chlorine in Clearwater Storage Tank Overdose: Turn off dosing pump, drain and refill Clearwater Storage Tanks until target chlorine level is within normal parameters. Underdose: Add chlorine until level is within normal parameters
Chorine injection	Free chlorine	Excessive or under dosage of chlorine	Recorded daily post clearwater storage tank	10 mL sample	Photometer	Lower – 1.5 mg/L Upper – 3.8 mg/L	Re-test and adjust dosage as required	Lower – 0.8 mg/L Upper – 5.0 mg/L	 Check chlorine dosing at WTP and adjust Flush reticulation mains and clearwater storage tank
Chlorine residual • Sample Point 1 (treated) (See water supply map Figure 12-2)	Free chlorine	Biological Contamination (Microbial Growth)	Recorded Weekly	10 mL sample	Photometer	Lower – 0.5 mg/L Upper – 3.5 mg/L	Check chlorine dosing at WTP and adjust	Lower – 0.2 mg/L Upper – 5 mg/L	 Check chlorine dosing and adjust Flush learwater storage tank Overdose: Turn off dosing pump, drain and

Table 17-9 Paradise Dam Operational Monitoring

Drinking Water Quality Management Plan

Operational Control Points	Operational Parameter	Associated Hazard	Monitoring	; Requirements	Target Limits	Action if Target Level Exceeded	Critical Limit	Action if Critical Level Exceeded
								refill Clearwater Storage Tank until target chlorine level is within normal parameters.
								 Underdose: Add chlorine until level is within normal parameters

18. APPENDIX B: VERIFICATION MONITORING PROGRAMS

Verification Monitoring

The following tables details the Verification Monitoring conducted by NBRC. NBRC engages QHFSS to perform both weekly and monthly testing of water across the nine water schemes. The following tables include the parameters to be monitored, monitoring locations, frequency to ensure compliance with drinking water quality criteria; and how excursions are managed.

Biggenden Verification Monitoring

As the Biggenden system supplies a population less than 1000, biological verification monitoring is performed monthly. Key elements of Biggenden's verification monitoring table are listed in Table 18-1.

	ADWG Value (specif			Fre	equency	Analysing		
Contaminant Class	Health	Aesthetic	Associated Hazard	At WTP Outlet	In distribution system	Authority	Response to Exceedances	
Bacterial • <i>E. coli</i>	Nil detected	NA	Biological contamination	Monthly. One sample is obtained.	Monthly. Two samples are obtained from the residual chlorine test locations within the reticulation.	QHFSS	 NBRC Senior Water and Wastewater Supervisor and Water and Wastewater Manager notified. Refer to Table 15-2 DNRME and Qld Health notified. 	
Total coliforms	NA NBRC critical limit set at 20 cfu/100mL	NA	Biological contamination	Monthly. One sample is obtained.	Monthly. The same two samples are obtained as above	QHFSS	 NBRC Senior Water and Wastewater Supervisor and Water and Wastewater Manager notified. Internal investigation triggered. 	

Table 18-1 Biggenden Verification Monitoring

	ADWG Value speci			Fre	equency	Analysing	
Contaminant Class	Health	Aesthetic	Associated Hazard	At WTP Outlet	In distribution system	Authority	Response to Exceedances
Physio Chemical • Turbidity • pH • Temp	• NA • NA	 5 NTU 6.5 to 8.5 	Reduced aesthetic quality.	With all micro and Chlorine Samples	With all micro and Chlorine Samples	Inhouse	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented
General Metals Manganese Copper Iron Aluminium 	• 0.5 2 - 0.2	• 0.1 1 2 -	Exceedance of health-based limits.	-	Monthly. One sample is obtained from one of the sample points within the reticulation.	QHFSS	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented
Heavy Metals Arsenic 	• 0.01	• NA	Exceedance of health-based limits.	12 monthlies. One sample obtained.		QHFSS	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented – investigate alternate water sources
Anions Nitrate 	• 50	• NA	Exceedance of health-based limits.		Monthly. One sample is obtained from one of the sample points within the reticulation.	QHFSS	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented

	ADWG Value (mg/L unless specified)			Fre	equency	Analysing			
Contaminant Class	Health	Aesthetic	Associated Hazard	At WTP Outlet	In distribution system	Authority	Response to Exceedances		
Total THMs	200mg/L	NA	Exceedance of health-based limits.		Monthly	QHFSS	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented 		
Chlorates	0.8mg/L	QH	Detection of chemical which may cause harm with no ADWG Limit		Monthly	QHFSS	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented 		
Arsenic	0.01 mg/L	Heavy Metals	Health Limit	Monthly	Monthly	QHFSS	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented 		

Eidsvold Verification Monitoring

The Eidsvold system services a population less than 1000, biological verification monitoring is performed monthly. Key elements of Eidsvold's verification monitoring table are listed in Table 18-2.

Table 18-2 Eidsvold Verification Monitoring

		ADWG Value (mg/L unless specified)		Fre	equency	Analysing	
Contaminant Class	Health	Aesthetic	Associated Hazard	At WTP Outlet	In distribution system	Authority	Response to Exceedances
Bacterial • E. coli	Nil detected	NA	Biological contamination	Monthly. One sample is obtained.	Monthly. Two samples are obtained from the residual chlorine test locations shown in Table 15.2	QHFSS	 NBRC Senior Water and Wastewater Supervisor and Water and Wastewater Manager notified. Refer to Table 15-2. DNRME and Qld Health notified.
Total coliforms	NA NBRC critical limit set at 20 cfu/100mL	NA	Biological contamination	Monthly. One sample is obtained.	Monthly. The same samples as above are obtained from the residual chlorine test locations shown in Table 15.2	QHFSS	 NBRC Senior Water and Wastewater Supervisor and Water and Wastewater Manager notified. Internal investigation triggered.

	ADWG Value speci			Fre	equency	Analysing		
Contaminant Class	Health	Aesthetic	Associated Hazard	At WTP Outlet	In distribution system	Authority	Response to Exceedances	
Physio Chemical • Turbidity • pH • Temp	_	 5 NTU 6.5 to 8.5 		With all micro and Chlorine Samples	With all micro and Chlorine Samples	Inhouse	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented 	
General Metals Manganese Copper Iron Aluminium 	• 0.5 2 - 0.2	• 0.1 1 2 -	Exceedance of health- based limits.	-	Monthly. One sample is obtained from one of the sample points within the reticulation.	QHFSS	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented 	
Anions Nitrate 	• 50	• NA	Exceedance of health- based limits.	-	Monthly. One sample is obtained from one of the sample points within the reticulation.	QHFSS	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented 	

	ADWG Value (specif	-		Fre	quency	Analysing		
Contaminant Class	Health	Aesthetic	Associated Hazard	At WTP Outlet	In distribution system	Authority	Response to Exceedances	
Total THMs	200mg/L	NA	Exceedance of health- based limits.		Quarterly	QHFSS	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented 	
Chlorates	0.8mg/L	QH	Detection of chemical which may cause harm with no ADWG Limit		Quarterly	QHFSS	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented 	
Arsenic	0.01 mg/L	Heavy Metals	Health Limit	Annually	Annually	QHFSS	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented 	

Gayndah Verification Monitoring

As the Gayndah system serves more than 1000 population biological verification monitoring is performed weekly. Key elements of Gayndah's verification monitoring table are listed in Table 18-3.

Table 18-3 Gayndah Verification Monitoring

	ADWG Value (mg/l	ADWG Value (mg/L unless specified)		F	requency		
Contaminant Class	Health	Aesthetic	Associated Hazard	At WTP Outlet	In distribution system	Analysing Authority	Response to Exceedances
Bacterial • E. coli	Nil detected		Biological contamination	Weekly One sample is obtained.	Weekly. Two samples are obtained from the residual chlorine test locations shown in Table 15.3	QHFSS	 NBRC Senior Water and Wastewater Supervisor and Water and Wastewater Manager notified. Refer to Table 15-2. DNRME and Qld Health notified.
Total coliforms	NA NBRC critical limit set at 20 cfu/100mL	NA	Biological contamination	Weekly. One sample is obtained.	Weekly. The same samples as above obtained from the sample points within the reticulation.	QHFSS	 NBRC Senior Water and Wastewater Supervisor and Water and Wastewater Manager notified. Internal investigation triggered.
Physio Chemical • Turbidity • pH • Temp	• NA • NA	 5 NTU 6.5 to 8.5 	Reduced aesthetic quality.	– With all micro and Chlorine Samples	With all micro and Chlorine Samples	Inhouse	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented
General Metals Manganese Copper 	• 0.5 2	• 0.1 1	Exceedance of health- based limits.	-	Monthly.	QHFSS	 Water Quality Data received from analysing authority.

	ADWG Value (mg/	L unless specified)		F	Frequency		
Contaminant Class	Health	Aesthetic	Associated Hazard	At WTP Outlet	In distribution system	Analysing Authority	Response to Exceedances
lron Aluminium	- 0.2	2 -			One sample is obtained from one of the sample points within the reticulation.		 Incident report completed identifying the cause of exceedance. Corrective action implemented and documented
Anions Nitrate 	• 50	• NA	Exceedance of health- based limits.	-	Monthly. One sample is obtained from one of the sample points within the reticulation.	QHFSS	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented
Total THMs	200mg/L	NA	Exceedance of health- based limits.		Monthly	QHFSS	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented
Chlorates	0.8mg/L	QH	Detection of chemical which may cause harm with no ADWG Limit		Monthly	QHFSS	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented
Arsenic	0.01 mg/L	Heavy Metals	Health Limit	Annually	Annually	QHFSS	 Water Quality Data received from analysing authority.

	ADWG Value (mg/L	unless specified)		Frequency				
Contaminant Class	Health	Aesthetic	Associated Hazard	At WTP Outlet	In distribution system	Analysing Authority	Response to Exceedances	
							 Incident report completed identifying the cause of exceedance. Corrective action implemented and documented 	

Mingo Crossing Verification Monitoring

As the Mingo Crossing system supplies a population less than 1000, biological verification monitoring is performed monthly. Key elements of Mingo Crossing's verification monitoring table are listed in Table 18-4.

Table 18-4 Mingo Crossing Verification Monitoring

	ADWG Value (mg/L	unless specified)		F	requency			
Contaminant Class	Health	Aesthetic	Associated Hazard	At WTP Outlet	In distribution system	Analysing Authority	Response to Exceedances	
Bacterial • E. coli	Nil detected	NA	Biological contamination	Monthly. One sample is obtained.	-	QHFSS	 NBRC Senior Water and Wastewater Supervisor and Water and Wastewater Manager notified. Refer to Table 15-2. DNRME and Qld Health notified. 	
Total coliforms	NA NBRC critical limit set at 20 cfu/100mL	NA	Biological contamination	Monthly. One sample is obtained.	-	QHFSS	 NBRC Senior Water and Wastewater Supervisor and Water and Wastewater Manager notified. Internal investigation triggered. 	
Physio Chemical Turbidity pH Temp •	• NA • NA	 5 NTU 6.5 to 8.5 	Reduced aesthetic quality.	With all Micro and chlorine samples		Inhouse	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented 	

	ADWG Value (mg/l	unless specified)		F	requency		
Contaminant Class	Health	Aesthetic	Associated Hazard	At WTP Outlet	In distribution system	Analysing Authority	Response to Exceedances
General Metals Manganese Copper Iron Aluminium 	 0.5 2 - 0.2 	• 0.1 1 2 • -	Exceedance of health- based limits.	Annual		QHFSS	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented
Anions Nitrate 	• 50	• NA	Exceedance of health- based limits.	Annual		QHFSS	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented
Total THMs	200mg/L	NA	Exceedance of health- based limits.	Twice Annually		QHFSS	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented
Chlorates	0.8mg/L	QH	Detection of chemical which may cause harm with no ADWG Limit	Twice Annually		QHFSS	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented

	ADWG Value (mg/L	unless specified)		Fi	requency		
Contaminant Class	Health	Aesthetic	Associated Hazard	At WTP Outlet	In distribution system	Analysing Authority	Response to Exceedances
Arsenic	0.01 mg/L	Heavy Metals	Health Limit	Annually		QHFSS	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented

Monto Verification Monitoring

The Monto system services a population greater than 1000 so biological verification monitoring is performed weekly. Key elements of Monto's verification monitoring table are listed in Table 18-5.

Table 18-5 Monto Verification Monitoring

	ADWG Value (mg/l	unless specified)		Frequency				
Contaminant Class	Health	Aesthetic	Associated Hazard	At WTP Outlet	In distribution system	Analysing Authority	Response to Exceedances	
Bacterial • E. coli	Nil detected		Biological contamination	Weekly. One sample is obtained.	Weekly. Two samples are obtained from the residual chlorine test locations shown in Table 15.4	QHFSS	 NBRC Senior Water and Wastewater Supervisor and Water and Wastewater Manager notified. Refer to Table 15-2. DNRME and Qld Health notified. 	
Total coliforms	NA NBRC critical limit set at 20 cfu/100mL	NA	Biological contamination	Weekly. One sample is obtained.	Weekly. The same samples as above are obtained from the sample points within the reticulation.	QHFSS	 NBRC Senior Water and Wastewater Supervisor and Technical Services Manager notified. Internal investigation triggered. 	
Physio Chemical Turbidity pH Temp	• NA • NA	 5 NTU 6.5 to 8.5 	Reduced aesthetic quality.	With all micro and Chlorine Samples	With all micro and Chlorine Samples	Inhouse	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented 	

	ADWG Value (mg/	L unless specified)			Frequency			
Contaminant Class	Health	Aesthetic	Associated Hazard	At WTP Outlet	In distribution system	Analysing Authority	Response to Exceedances	
 General Metals Manganese Copper Iron Aluminium 	 0.5 2 - 0.2 	• 0.1 1 2 • -	Exceedance of health- based limits.	-	Monthly. One sample is obtained from one of the sample points within the reticulation.	QHFSS	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented 	
Anions Nitrate 	• 50	• NA	Exceedance of health based limits.	-	Monthly. One sample is obtained from one of the sample points within the reticulation.	QHFSS	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented 	
Total THMs	200mg/L	NA	Exceedance of health- based limits.		Quarterly	QHFSS	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented 	
Chlorates	0.8mg/L	QH	Detection of chemical which may cause harm with no ADWG Limit		Quarterly	QHFSS	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented 	
Arsenic	0.01 mg/L	Heavy Metals	Health Limit	Annually	Annually	QHFSS	 Water Quality Data received from analysing authority. 	

	ADWG Value (mg/L	unless specified)		Frequency				
Contaminant Class	Health	Aesthetic	Associated Hazard	At WTP Outlet	In distribution system	Analysing Authority	Response to Exceedances	
							 Incident report completed identifying the cause of exceedance. Corrective action implemented and documented 	

Mount Perry Verification Monitoring

The Mount Perry system services a population less than 1000 and biological verification monitoring is performed monthly. Key elements of Mount Perry's verification monitoring table are listed in Table 18-6.

Table 18-6 Mount Perry Verification Monitoring

	ADWG Value (n specifie			Fre	quency	Analysing	
Contaminant Class	Health	Aesthetic	Associated Hazard	At WTP Outlet	In distribution system	Authority	Response to Exceedances
Bacterial • <i>E. coli</i>	Nil detected		Biological contamination	Monthly. One sample is obtained.	Monthly. One sample is obtained from the residual chlorine test locations shown in Table 15.5	QHFSS	 NBRC Senior Water and Wastewater Supervisor and Water and Wastewater Manager notified. Refer to Table 15-2. DNRME and Qld Health notified.
Total coliforms	NA NBRC critical limit set at 20 cfu/100mL	NA	Biological contamination	Monthly. One sample is obtained.	Monthly. The same samples as above obtained from the sample points within the reticulation.	QHFSS	 NBRC Senior Water and Wastewater Supervisor and Water and Wastewater Manager notified. Internal investigation triggered.
Physio Chemical • Turbidity • pH • Temp	• NA • NA	 5 NTU 6.5 to 8.5 	Reduced aesthetic quality.	With all micro and Chlorine Samples	With all micro and Chlorine Samples	Inhouse	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented

	ADWG Value (specifi	-		Fr	equency	Analysing	
Contaminant Class	Health	Aesthetic	Associated Hazard	At WTP Outlet	In distribution system	Authority	Response to Exceedances
General Metals Manganese Copper Iron Aluminium 	• 0.5 2 - 0.2	• 0.1 1 2 -	Exceedance of health-based limits.	-	Monthly. One sample is obtained from one of the sample points within the reticulation.	QHFSS	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented
Anions Nitrate 	• 50	• NA	Exceedance of health-based limits.		Monthly. The same sample as above is obtained from one of the sample points within the reticulation.	QHFSS	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented
Total THMs	200mg/L	NA	Exceedance of health-based limits.		Quarterly	QHFSS	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented
Chlorates	0.8mg/L	QH	Detection of chemical which may cause harm with no ADWG Limit		Quarterly	QHFSS	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented
Arsenic	0.01 mg/L	Heavy Metals	Health Limit	Annually	Annually	QHFSS	1. Water Quality Data received from analysing authority.

	ADWG Value (n specifie	0.		Fre	quency	Analysing	
Contaminant Class	Health	Aesthetic	Associated Hazard	At WTP Outlet	In distribution system	Authority	Response to Exceedances
							 Incident report completed identifying the cause of exceedance. Corrective action implemented and documented

Mulgildie Verification Monitoring

The Mulgildie system services a population less than 1,000 and biological verification monitoring is performed monthly. Key elements of Mulgildie's verification monitoring table are listed in Table 18-7.

Table 18-7 Mulgildie Verification Monitoring

	ADWG Value (specifi	•		Fre	quency	Analysing		
Contaminant Class	Health	Aesthetic	Associated Hazard	At WTP Outlet	In distribution system	Authority	Response to Exceedances	
Bacterial • <i>E. coli</i>	Nil detected		Biological contamination	Monthly. One sample is obtained.	Monthly. One sample is obtained from the residual chlorine test locations shown in Table 15.6	QHFSS	 NBRC Senior Water and Wastewater Supervisor and Water and Wastewater Manager notified. Refer to Table 15-2. DNRME and Qld Health notified. 	
Total coliforms	NA NBRC critical limit set at 20 cfu/100mL	NA	Biological contamination	Monthly. One sample is obtained.	Monthly. The same samples as above obtained from the sample points within the reticulation.	QHFSS	 NBRC Senior Water and Wastewater Supervisor and Water and Wastewater Manager notified. Internal investigation triggered. 	
Physio Chemical Turbidity pH Temp	• NA • NA	 5 NTU 6.5 to 8.5 	Reduced aesthetic quality.	With all micro and Chlorine Samples	With all micro and Chlorine Samples	Inhouse	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented 	

	ADWG Value (specifi			Fre	quency	Analysing			
Contaminant Class	Health	Aesthetic	Associated Hazard	At WTP Outlet	In distribution system	Authority	Response to Exceedances		
General Metals Manganese Copper Iron Aluminium 	• 0.5 2 - 0.2	• 0.1 1 2 -	Exceedance of health- based limits.	-	Monthly. One sample is obtained from one of the sample points within the reticulation.	QHFSS	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented 		
Anions Nitrate 	• 50	• NA	Exceedance of health- based limits.		Monthly. One sample is obtained from one of the sample points within the reticulation.	QHFSS	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented 		
Total THMs	200mg/L	NA	Exceedance of health- based limits.		Tweice Annually	QHFSS	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented 		
Chlorates	0.8mg/L	QН	Detection of chemical which may cause harm with no ADWG Limit		Twice Annually	QHFSS	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented 		

Arsenic	0.01 mg/L	Heavy Metals	Health Limit	Annually	Annually	QHFSS	3.	Water Quality Data received
								from analysing authority.
							4.	Incident report completed
								identifying the cause of
								exceedance.
							4.	Corrective action implemented
								and documented

Mundubbera Verification Monitoring

The Mundubbera system services a population greater than 1000 and biological verification monitoring is performed weekly. Key elements of Mundubbera's verification monitoring table are listed in Table 18-8.

Table 18-8 Mundubbera Verification Monitoring

	ADWG Value speci		Associated Hazard		quency	Analysing	
Contaminant Class	Health	Aesthetic	Associated Hazard	At WTP Outlet	In distribution system	Authority	Response to Exceedances
Bacterial • <i>E. coli</i>	Nil detected		Biological contamination	Weekly. One sample is obtained.	Weekly. Two samples are obtained from the residual chlorine test locations shown in Table 15.7	QHFSS	 NBRC Senior Water and Wastewater Supervisor and Water and Wastewater Manager notified. Refer to Table 15-2. DNRME and Qld Health notified.
Total coliforms	NA NBRC critical limit set at 20 cfu/100mL	NA	Biological contamination	Weekly. One sample is obtained.	Weekly. The same samples as above obtained from the sample points within the reticulation.	QHFSS	 NBRC Senior Water and Wastewater Supervisor and Water and Wastewater Manager notified. Internal investigation triggered.
Physio Chemical Turbidity pH Temp	• NA • NA	 5 NTU 6.5 to 8.5 	Reduced aesthetic quality.	With all micro and Chlorine Samples	With all micro and Chlorine Samples	Inhouse	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented

	ADWG Value specif	-		Fre	equency	Analysing			
Contaminant Class	Health	Aesthetic	Associated Hazard	At WTP Outlet	In distribution system	Authority	Response to Exceedances		
General Metals Manganese Copper Iron Aluminium 	• 0.5 2 - 0.2	• 0.1 1 2 -	Exceedance of health- based limits.	-	Monthly. One sample is obtained from one of the sample points within the reticulation.	QHFSS	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented 		
Anions Nitrate 	• 50	• NA	Exceedance of health- based limits.	-	Monthly. One sample is obtained from one of the sample points within the reticulation.	QHFSS	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented 		
Total THMs	200mg/L	NA	Exceedance of health- based limits.		Monthly	QHFSS	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented 		
Chlorates	0.8mg/L	QH	Detection of chemical which may cause harm with no ADWG Limit		Monthly	QHFSS	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented 		

	ADWG Value (specif	•		Fre	quency	Analysing	
Contaminant Class	Health	Aesthetic	Associated Hazard	At WTP Outlet In distribution System Authority Res		Response to Exceedances	
Arsenic	0.01 mg/L	Heavy Metals	Health Limit	Annually	Annually	QHFSS	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented

Paradise Dam Verification Monitoring

As the Paradise Dam system supplies a population less than 1000, biological verification monitoring is performed monthly. Key elements of Paradise Dam's verification monitoring table are listed in Table 18-9.

Table 18-9 Paradise Dam Verification Monitoring

	ADWG Value (mg/L unless specified)			Freque				
Contaminant Class	Health	Aesthetic Associated Hazard		At WTP Outlet	In distribution system	Analysing Authority	Response to Exceedances	
Bacterial • <i>E. coli</i>	Nil detected	NA	Biological contamination	Monthly. One sample is obtained.		QHFSS	1. 2. 3.	NBRC Senior Water and Wastewater Supervisor and Water and Wastewater Manager notified. Refer to Table 15-2 DNRME and Qld Health notified.

	ADWG Value (mg/L	lue (mg/L unless specified) Fre		Freque	ncy	A	
Contaminant Class	Health	Aesthetic	Associated Hazard	At WTP Outlet In distribution Authority system		Response to Exceedances	
Total coliforms	NA NBRC critical limit set at 20 cfu/100mL	NA	Biological contamination	Monthly. One sample is obtained.		QHFSS	 NBRC Senior Water and Wastewater Supervisor and Water and Wastewater Manager notified. Internal investigation triggered.
Physio Chemical • Turbidity • pH • Temp	• NA • NA	 5 NTU 6.5 to 8.5 	Reduced aesthetic quality.	With all micro and Chlorine Samples		Inhouse	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented
General Metals Manganese Copper Iron Aluminium 	 0.5 2 - 0.2 	• 0.1 1 2 • -	Exceedance of health- based limits.	Monthly. One sample is obtained from one of the sample points within the reticulation.		QHFSS	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented
Anions Nitrate 	• 50	• NA	Exceedance of health- based limits.	Annually		QHFSS	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented

	ADWG Value (mg/L	unless specified)		Freque	ency		
Contaminant Class	Health	Aesthetic	Associated Hazard	At WTP Outlet	Outlet system		Response to Exceedances
Total THMs	200mg/L	NA	Exceedance of health- based limits.	Twice Annually		QHFSS	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented
Chlorates	0.8mg/L	QH	Detection of chemical which may cause harm with no ADWG Limit	Twice annually		QHFSS	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented
Arsenic	0.01 mg/L	Heavy Metals	Health Limit	Annually		QHFSS	 Water Quality Data received from analysing authority. Incident report completed identifying the cause of exceedance. Corrective action implemented and documented

Summary

Table 16-19 Verification Monitoring Summary

Parameter	Control Limit	Suite	Туре	Biggenden	Eidsvold	Gayndah	Mingo Crossing CP	Monto	Mount Perry	Mulgildie	Mundubbera	Paradise Dam CP
Chlorates (Treated)	0.8mg/L	Disinfection By- products	Verification/ Source Risk	Monthly	Quarterly	Monthly	Twice Annually	Quarterly	Quarterly	Twice Annually	Monthly	Twice Annually

Parameter	Control Limit	Suite	Туре	Biggenden	Eidsvold	Gayndah	Mingo Crossing CP	Monto	Mount Perry	Mulgildie	Mundubbera	Paradise Dam CP
Total THMs (Treated)	0.25mg/L	Disinfection By- products	Verification	Monthly	Quarterly	Monthly	Twice Annually *	Quarterly	Quarterly	Twice Annually *	Monthly	Twice Annually *
Aluminium (Treated)	0.2mg/L	Metals	Verification	Monthly	Annually	Annually	Annually	Annually	Annually	Annually	Annually	Annually
E. Coli	0 CFU	Microbial	Microbial	3x monthly	3x monthly	3x monthly	1x Monthly	3x monthly	2x Monthly	2x Monthly	3x monthly	1x Monthly
Total Coliforms	20 CFU/100m L	Microbial	Microbial	3x monthly	3x monthly	3x monthly	1x Monthly	3x monthly	2x Monthly	2x Monthly	3x monthly	1x Monthly
Turbidity	5 NTU	Physical	Effective Disinfection	All @	All @	All @	All @	All @	All @	All @	All @	All @
рН	6.5-8.5	Physical	Effective Disinfection	All @	All @	All @	All @	All @	All @	All @	All @	All @
Temperatur e	22C	Physical	Effective Disinfection	All @	All @	All @	All @	All @	All @	All @	All @	All @
Manganese	0.5mg/L	Metals	Metals	Monthly	Monthly	Monthly	Annually	Monthly	Monthly	Monthly	Monthly	Annually
Copper	2 mg/L	Metals	Metals	Monthly	Monthly	Monthly	Annually	Monthly	Monthly	Monthly	Monthly	Annually
Arsenic (treated)	0.01 mg/L	Heavy Metals	Health	Monthly	Annually	Annually	Annually	Annually	Annually	Annually	Annually	Annually
Iron	2mg/L	Metals	Aesthetic	Monthly	Monthly	Monthly	Annually	Monthly	Monthly	Monthly	Monthly	Annually
Nitrate	50mg/L	Anions	SWA	Monthly	Monthly	Monthly	Annually	Monthly	Monthly	Annually	Monthly	Annually
#Summer												
* Late Spring a Summer	& Late											
[@] with all mic	ro and disinfect	tion samples										

Other Monitoring												
Parameter	Control Limit	Suite	Туре	Biggenden	Eidsvold	Gayndah	Mingo Crossing CP	Monto	Mount Perry	Mulgildie	Mundubbera	Paradise Dam CP
Tebuthiuron (Raw)	0.2mg/L	Pesticides	Source Risk	Annually#	Annually#	Quarterly	Annually [#]	Annually#	Annually#	Annually#	Quarterly	Annually [#]
TCCP (Raw)	0.1mg/L	Pesticides	Source Risk	Annually#	Annually#	Quarterly	Annually#	Annually#	Annually#	Annually#	Quarterly	Annually [#]
Imidacloprid (Raw)	0.2mg/L	Pesticides	Source Risk	Annually#	Annually#	Quarterly	Annually#	Annually#	Annually#	Annually#	Quarterly	Annually#
[#] Summer												
* Late Spring & Late Summer												

Other Monitoring